Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Clin Med ; 13(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892863

RESUMO

Background: Allergen immunotherapy (AIT) is a well-established and efficient method of causative treatment for allergic rhinitis, asthma and insect venom allergy. Traditionally, a recent history of malignant neoplasm is regarded as a contraindication to AIT due to concerns that AIT might stimulate tumor growth. However, there are no data confirming that the silencing of the Th2 response affects prognosis in cancer. Objectives: The aim of this study was to investigate frequency of malignant tumors in patients undergoing AIT and the association between AIT and cancer-related mortality. Patients and Methods: A group of 2577 patients with insect venom allergy undergoing AIT in 10 Polish allergology centers was screened in the Polish National Cancer Registry. Data on cancer type, diagnosis time and patients' survival were collected and compared with the general population. Results: In the study group, 86 cases of malignancies were found in 85 patients (3.3% of the group). The most common were breast (19 cases), lung (9 cases), skin (8 cases), colon and prostate cancers (5 cases each). There were 21 cases diagnosed before AIT, 38 during and 27 after completing AIT. Laplace's crude incidence rate was 159.5/100,000/year (general population rate: 260/100,000/year). During follow-up, 13 deaths related to cancer were revealed (15% of patients with cancer). Laplace's cancer mortality rate was 37.3/100,000/year (general population rate: 136.8/100,000/year). Conclusions: Malignancy was found in patients undergoing immunotherapy less often than in the general population. Patients with cancer diagnosed during or after AIT did not show a lower survival rate, which suggests that AIT does not affect the prognosis.

2.
Heliyon ; 10(1): e23244, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163095

RESUMO

Therapy-related acute myeloid leukaemia (t-AML) is a late side effect of previous chemotherapy (ct-AML) and/or radiotherapy (rt-AML) or immunosuppressive treatment. t-AMLs, which account for ∼10-20 % of all AML cases, are extremely aggressive and have a poor prognosis compared to de novo AML. Our hypothesis is that exposure to radiation causes genome-wide epigenetic changes in rt-AML. An epigenome-wide association study was undertaken, measuring over 850K methylation sites across the genome from fifteen donors (five healthy, five de novo, and five t-AMLs). The study predominantly focussed on 94K sites that lie in CpG-rich gene promoter regions. Genome-wide hypomethylation was discovered in AML, primarily in intergenic regions. Additionally, genes specific to AML were identified with promoter hypermethylation. A two-step validation was conducted, both internally, using pyrosequencing to measure methylation levels in specific regions across fifteen primary samples, and externally, with an additional eight AML samples. We demonstrated that the MEST and GATA5 gene promoters, which were previously identified as tumour suppressors, were noticeably hypermethylated in rt-AML, as opposed to other subtypes of AML and control samples. These may indicate the epigenetic involvement in the development of rt-AML at the molecular level and could serve as potential targets for drug therapy in rt-AML.

3.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256152

RESUMO

Cancer and ionizing radiation exposure are associated with inflammation. To identify a set of radiation-specific signatures of inflammation-associated genes in the blood of partially exposed radiotherapy patients, differential expression of 249 inflammatory genes was analyzed in blood samples from cancer patients and healthy individuals. The gene expression analysis on a cohort of 63 cancer patients (endometrial, head and neck, and prostate cancer) before and during radiotherapy (24 h, 48 h, ~1 week, ~4-8 weeks, and 1 month after the last fraction) identified 31 genes and 15 up- and 16 down-regulated genes. Transcription variability under normal conditions was determined using blood drawn on three separate occasions from four healthy donors. No difference in inflammatory expression between healthy donors and cancer patients could be detected prior to radiotherapy. Remarkably, repeated sampling of healthy donors revealed an individual endogenous inflammatory signature. Next, the potential confounding effect of concomitant inflammation was studied in the blood of seven healthy donors taken before and 24 h after a flu vaccine or ex vivo LPS (lipopolysaccharide) treatment; flu vaccination was not detected at the transcriptional level and LPS did not have any effect on the radiation-induced signature identified. Finally, we identified a radiation-specific signature of 31 genes in the blood of radiotherapy patients that were common for all cancers, regardless of the immune status of patients. Confirmation via MQRT-PCR was obtained for BCL6, MYD88, MYC, IL7, CCR4 and CCR7. This study offers the foundation for future research on biomarkers of radiation exposure, radiation sensitivity, and radiation toxicity for personalized radiotherapy treatment.


Assuntos
Neoplasias da Próstata , Exposição à Radiação , Radioterapia (Especialidade) , Masculino , Humanos , Lipopolissacarídeos , Inflamação/genética
4.
J Thorac Oncol ; 19(1): 94-105, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595684

RESUMO

INTRODUCTION: With global adoption of computed tomography (CT) lung cancer screening, there is increasing interest to use artificial intelligence (AI) deep learning methods to improve the clinical management process. To enable AI research using an open-source, cloud-based, globally distributed, screening CT imaging data set and computational environment that are compliant with the most stringent international privacy regulations that also protect the intellectual properties of researchers, the International Association for the Study of Lung Cancer sponsored development of the Early Lung Imaging Confederation (ELIC) resource in 2018. The objective of this report is to describe the updated capabilities of ELIC and illustrate how this resource can be used for clinically relevant AI research. METHODS: In this second phase of the initiative, metadata and screening CT scans from two time points were collected from 100 screening participants in seven countries. An automated deep learning AI lung segmentation algorithm, automated quantitative emphysema metrics, and a quantitative lung nodule volume measurement algorithm were run on these scans. RESULTS: A total of 1394 CTs were collected from 697 participants. The LAV950 quantitative emphysema metric was found to be potentially useful in distinguishing lung cancer from benign cases using a combined slice thickness more than or equal to 2.5 mm. Lung nodule volume change measurements had better sensitivity and specificity for classifying malignant from benign lung nodules when applied to solid lung nodules from high-quality CT scans. CONCLUSIONS: These initial experiments revealed that ELIC can support deep learning AI and quantitative imaging analyses on diverse and globally distributed cloud-based data sets.


Assuntos
Aprendizado Profundo , Enfisema , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Inteligência Artificial , Detecção Precoce de Câncer , Pulmão/patologia , Enfisema/patologia
5.
J Mol Diagn ; 26(1): 37-48, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865291

RESUMO

Several panels of circulating miRNAs have been reported as potential biomarkers of early lung cancer, yet the overlap of components between different panels is limited, and the universality of proposed biomarkers has been minimal across proposed panels. To assess the stability of the diagnostic potential of plasma miRNA signature of early lung cancer among different cohorts, a panel of 24 miRNAs tested in the frame of one lung cancer screening study (MOLTEST-2013, Poland) was validated with material collected in the frame of two other screening studies (MOLTEST-BIS, Poland; and SMAC, Italy) using the same standardized analytical platform (the miRCURY LNA miRNA PCR assay). On analysis of selected miRNAs, two associated with lung cancer development, miR-122 and miR-21, repetitively differentiated healthy participants from individuals with lung cancer. Additionally, miR-144 differentiated controls from cases specifically in subcohorts with adenocarcinoma. Other tested miRNAs did not overlap in the three cohorts. Classification models based on neither a single miRNA nor multicomponent miRNA panels (24-mer and 7-mer) showed classification performance sufficient for a standalone diagnostic biomarker (AUC, 75%, 71%, and 53% in MOLTEST-2013, SMAC, and MOLTEST-BIS, respectively, in the 7-mer model). The performance of classification in the MOLTEST-BIS cohort with the lowest contribution of adenocarcinomas was increased when only this cancer type was considered (AUC, 60% in 7-mer model).


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Detecção Precoce de Câncer , Biomarcadores , Adenocarcinoma/genética , Biomarcadores Tumorais/genética
6.
Front Oncol ; 13: 1154222, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849808

RESUMO

Introduction: The search for biomarkers to predict radiosensitivity is important not only to individualize radiotherapy of cancer patients but also to forecast radiation exposure risks. The aim of this study was to devise a machine-learning method to stratify radiosensitivity and to investigate its association with genome-wide copy number variations (CNVs) as markers of sensitivity to ionizing radiation. Methods: We used the Affymetrix CytoScan HD microarrays to survey common CNVs in 129 fibroblast cell strains. Radiosensitivity was measured by the surviving fraction at 2 Gy (SF2). We applied a dynamic programming (DP) algorithm to create a piecewise (segmented) multivariate linear regression model predicting SF2 and to identify SF2 segment-related distinctive CNVs. Results: SF2 ranged between 0.1384 and 0.4860 (mean=0.3273 The DP algorithm provided optimal segmentation by defining batches of radio-sensitive (RS), normally-sensitive (NS), and radio-resistant (RR) responders. The weighted mean relative errors (MRE) decreased with increasing the segments' number. The borders of the utmost segments have stabilized after partitioning SF2 into 5 subranges. Discussion: The 5-segment model associated C-3SFBP marker with the most-RS and C-7IUVU marker with the most-RR cell strains. Both markers were mapped to gene regions (MCC and SLC1A6, respectively). In addition, C-3SFBP marker is also located in enhancer and multiple binding motifs. Moreover, for most CNVs significantly correlated with SF2, the radiosensitivity increased with the copy-number decrease.In conclusion, the DP-based piecewise multivariate linear regression method helps narrow the set of CNV markers from the whole radiosensitivity range to the smaller intervals of interest. Notably, SF2 partitioning not only improves the SF2 estimation but also provides distinctive markers. Ultimately, segment-related markers can be used, potentially with tissues' specific factors or other clinical data, to identify radiotherapy patients who are most RS and require reduced doses to avoid complications and the most RR eligible for dose escalation to improve outcomes.

7.
Cancers (Basel) ; 15(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37686507

RESUMO

As a highly heterogeneous disease, breast cancer (BRCA) demonstrates a diverse molecular portrait. The well-established molecular classification (PAM50) relies on gene expression profiling. It insufficiently explains the observed clinical and histopathological diversity of BRCAs. This study aims to demographically and clinically characterize the six BRCA subpopulations (basal, HER2-enriched, and four luminal ones) revealed by their proteomic portraits. GMM-based high variate protein selection combined with PCA/UMAP was used for dimensionality reduction, while the k-means algorithm allowed patient clustering. The statistical analysis (log-rank and Gehan-Wilcoxon tests, hazard ratio HR as the effect size ES) showed significant differences across identified subpopulations in Disease-Specific Survival (p = 0.0160) and Progression-Free Interval (p = 0.0264). Luminal subpopulations vary in prognosis (Disease-Free Interval, p = 0.0277). The A2 subpopulation is of the poorest, comparable to the HER2-enriched subpopulation, prognoses (HR = 1.748, referenced to Luminal B, small ES), while A3 is of the best (HR = 0.250, large ES). Similar to PAM50 subtypes, no substantial dependency on demographic and clinical factors was detected across Luminal subpopulations, as measured by χ2 test and Cramér's V for ES, and ANOVA with appropriate post hocs combined with η2 or Cohen's d-type ES, respectively. Progesterone receptors can serve as the potential A2 biomarker within Luminal patients. Further investigation of molecular differences is required to examine the potential prognostic or clinical applications.

8.
Front Public Health ; 11: 1297942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162630

RESUMO

Introduction: Experimental studies complement epidemiological data on the biological effects of low doses and dose rates of ionizing radiation and help in determining the dose and dose rate effectiveness factor. Methods: Human VH10 skin fibroblasts exposed to 25, 50, and 100 mGy of 137Cs gamma radiation at 1.6, 8, 12 mGy/h, and at a high dose rate of 23.4 Gy/h, were analyzed for radiation-induced short- and long-term effects. Two sample cohorts, i.e., discovery (n = 30) and validation (n = 12), were subjected to RNA sequencing. The pool of the results from those six experiments with shared conditions (1.6 mGy/h; 24 h), together with an earlier time point (0 h), constituted a third cohort (n = 12). Results: The 100 mGy-exposed cells at all abovementioned dose rates, harvested at 0/24 h and 21 days after exposure, showed no strong gene expression changes. DMXL2, involved in the regulation of the NOTCH signaling pathway, presented a consistent upregulation among both the discovery and validation cohorts, and was validated by qPCR. Gene set enrichment analysis revealed that the NOTCH pathway was upregulated in the pooled cohort (p = 0.76, normalized enrichment score (NES) = 0.86). Apart from upregulated apical junction and downregulated DNA repair, few pathways were consistently changed across exposed cohorts. Concurringly, cell viability assays, performed 1, 3, and 6 days post irradiation, and colony forming assay, seeded just after exposure, did not reveal any statistically significant early effects on cell growth or survival patterns. Tendencies of increased viability (day 6) and reduced colony size (day 21) were observed at 12 mGy/h and 23.4 Gy/min. Furthermore, no long-term changes were observed in cell growth curves generated up to 70 days after exposure. Discussion: In conclusion, low doses of gamma radiation given at low dose rates had no strong cytotoxic effects on radioresistant VH10 cells.


Assuntos
Exposição à Radiação , Radiação Ionizante , Humanos , Relação Dose-Resposta à Radiação , Raios gama , Fibroblastos/efeitos da radiação , Exposição à Radiação/efeitos adversos
9.
Biomolecules ; 14(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38254644

RESUMO

Radiomics is an emerging approach to support the diagnosis of pulmonary nodules detected via low-dose computed tomography lung cancer screening. Serum metabolome is a promising source of auxiliary biomarkers that could help enhance the precision of lung cancer diagnosis in CT-based screening. Thus, we aimed to verify whether the combination of these two techniques, which provides local/morphological and systemic/molecular features of disease at the same time, increases the performance of lung cancer classification models. The collected cohort consists of 1086 patients with radiomic and 246 patients with serum metabolomic evaluations. Different machine learning techniques, i.e., random forest and logistic regression were applied for each omics. Next, model predictions were combined with various integration methods to create a final model. The best single omics models were characterized by an AUC of 83% in radiomics and 60% in serum metabolomics. The model integration only slightly increased the performance of the combined model (AUC equal to 85%), which was not statistically significant. We concluded that radiomics itself has a good ability to discriminate lung cancer from benign lesions. However, additional research is needed to test whether its combination with other molecular assessments would further improve the diagnosis of screening-detected lung nodules.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Radiômica , Tomografia Computadorizada por Raios X , Computadores
10.
BMC Bioinformatics ; 23(1): 538, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503372

RESUMO

BACKGROUND: Investigating molecular heterogeneity provides insights into tumour origin and metabolomics. The increasing amount of data gathered makes manual analyses infeasible-therefore, automated unsupervised learning approaches are utilised for discovering tissue heterogeneity. However, automated analyses require experience setting the algorithms' hyperparameters and expert knowledge about the analysed biological processes. Moreover, feature engineering is needed to obtain valuable results because of the numerous features measured. RESULTS: We propose DiviK: a scalable stepwise algorithm with local data-driven feature space adaptation for segmenting high-dimensional datasets. The algorithm is compared to the optional solutions (regular k-means, spatial and spectral approaches) combined with different feature engineering techniques (None, PCA, EXIMS, UMAP, Neural Ions). Three quality indices: Dice Index, Rand Index and EXIMS score, focusing on the overall composition of the clustering, coverage of the tumour region and spatial cluster consistency, are used to assess the quality of unsupervised analyses. Algorithms were validated on mass spectrometry imaging (MSI) datasets-2D human cancer tissue samples and 3D mouse kidney images. DiviK algorithm performed the best among the four clustering algorithms compared (overall quality score 1.24, 0.58 and 162 for d(0, 0, 0), d(1, 1, 1) and the sum of ranks, respectively), with spectral clustering being mostly second. Feature engineering techniques impact the overall clustering results less than the algorithms themselves (partial [Formula: see text] effect size: 0.141 versus 0.345, Kendall's concordance index: 0.424 versus 0.138 for d(0, 0, 0)). CONCLUSIONS: DiviK could be the default choice in the exploration of MSI data. Thanks to its unique, GMM-based local optimisation of the feature space and deglomerative schema, DiviK results do not strongly depend on the feature engineering technique applied and can reveal the hidden structure in a tissue sample. Additionally, DiviK shows high scalability, and it can process at once the big omics data with more than 1.5 mln instances and a few thousand features. Finally, due to its simplicity, DiviK is easily generalisable to an even more flexible framework. Therefore, it is helpful for other -omics data (as single cell spatial transcriptomic) or tabular data in general (including medical images after appropriate embedding). A generic implementation is freely available under Apache 2.0 license at https://github.com/gmrukwa/divik .


Assuntos
Algoritmos , Metabolômica , Animais , Camundongos , Humanos , Análise por Conglomerados , Espectrometria de Massas , Big Data
11.
J Pers Med ; 12(7)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35887610

RESUMO

Tumor-infiltrating lymphocytes (TILs), identified on HE-stained histopathological images in the cancer area, are indicators of the adaptive immune response against cancers and play a major role in personalized cancer immunotherapy. Recent works indicate that the spatial organization of TILs may be prognostic of disease-specific survival and recurrence. However, there are a limited number of methods that were proposed and tested in analyses of the spatial structure of TILs. In this work, we evaluated 14 different spatial measures, including the one developed for other omics data, on 10,532 TIL maps from 23 cancer types in terms of reproducibility, uniqueness, and impact on patient survival. For each spatial measure, 16 different scenarios for the definition of prognostic factor were tested. We found no difference in survival prediction when TIL maps were stored as binary images or continuous TIL probability scores. When spatial measures were discretized into a low and high category, a higher correlation with survival was observed. Three measures with the highest cancer prognosis capability were spatial autocorrelation, GLCM M1, and closeness centrality. Most of the tested measures could be further tuned to increase prediction performance.

12.
Transplant Proc ; 54(4): 1060-1064, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35523596

RESUMO

Orthotopic heart transplantation (OHT) has become one of the most expensive and resource-consuming treatment options for patients with end-stage heart failure. It is therefore useful to review clinical data, such as treatment duration after surgery and midterm follow-up in this group of patients. Contemporary epidemiologic data on early and midterm OHT follow-ups including patient demographics, hospitalization rates and related post-OHT morbidity, and mortality are scarce in Poland. The aim of the study was to determine early survival, hospitalization rates related to OHT and related morbidity, and mortality in Poland in the recent decade.


Assuntos
Insuficiência Cardíaca , Transplante de Coração , Transplante de Coração/métodos , Humanos , Polônia , Estudos Retrospectivos , Resultado do Tratamento
13.
Front Genet ; 12: 767358, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956320

RESUMO

A typical genome-wide association study (GWAS) analyzes millions of single-nucleotide polymorphisms (SNPs), several of which are in a region of the same gene. To conduct gene set analysis (GSA), information from SNPs needs to be unified at the gene level. A widely used practice is to use only the most relevant SNP per gene; however, there are other methods of integration that could be applied here. Also, the problem of nonrandom association of alleles at two or more loci is often neglected. Here, we tested the impact of incorporation of different integrations and linkage disequilibrium (LD) correction on the performance of several GSA methods. Matched normal and breast cancer samples from The Cancer Genome Atlas database were used to evaluate the performance of six GSA algorithms: Coincident Extreme Ranks in Numerical Observations (CERNO), Gene Set Enrichment Analysis (GSEA), GSEA-SNP, improved GSEA for GWAS (i-GSEA4GWAS), Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA), and Over-Representation Analysis (ORA). Association of SNPs to phenotype was calculated using modified McNemar's test. Results for SNPs mapped to the same gene were integrated using Fisher and Stouffer methods and compared with the minimum p-value method. Four common measures were used to quantify the performance of all combinations of methods. Results of GSA analysis on GWAS were compared to the one performed on gene expression data. Comparing all evaluation metrics across different GSA algorithms, integrations, and LD correction, we highlighted CERNO, and MAGENTA with Stouffer as the most efficient. Applying LD correction increased prioritization and specificity of enrichment outcomes for all tested algorithms. When Fisher or Stouffer were used with LD, sensitivity and reproducibility were also better. Using any integration method was beneficial in comparison with a minimum p-value method in specific combinations. The correlation between GSA results from genomic and transcriptomic level was the highest when Stouffer integration was combined with LD correction. We thoroughly evaluated different approaches to GSA in GWAS in terms of performance to guide others to select the most effective combinations. We showed that LD correction and Stouffer integration could increase the performance of enrichment analysis and encourage the usage of these techniques.

14.
Cancers (Basel) ; 13(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34503159

RESUMO

Intra-tumor heterogeneity (ITH) results from the coexistence of genetically distinct cancer cell (sub)populations, their phenotypic plasticity, and the presence of heterotypic components of the tumor microenvironment (TME). Here we addressed the potential association between phenotypic ITH revealed by mass spectrometry imaging (MSI) and the prognosis of breast cancer. Tissue specimens resected from 59 patients treated radically due to the locally advanced HER2-positive invasive ductal carcinoma were included in the study. After the on-tissue trypsin digestion of cellular proteins, peptide maps of all cancer regions (about 380,000 spectra in total) were segmented by an unsupervised approach to reveal their intrinsic heterogeneity. A high degree of similarity between spectra was observed, which indicated the relative homogeneity of cancer regions. However, when the number and diversity of the detected clusters of spectra were analyzed, differences between patient groups were observed. It is noteworthy that a higher degree of heterogeneity was found in tumors from patients who remained disease-free during a 5-year follow-up (n = 38) compared to tumors from patients with progressive disease (distant metastases detected during the follow-up, n = 21). Interestingly, such differences were not observed between patients with a different status of regional lymph nodes, cancer grade, or expression of estrogen receptor at the time of the primary treatment. Subsequently, spectral components with different abundance in cancer regions were detected in patients with different outcomes, and their hypothetical identity was established by assignment to measured masses of tryptic peptides identified in corresponding tissue lysates. Such differentiating components were associated with proteins involved in immune regulation and hemostasis. Further, a positive correlation between the level of tumor-infiltrating lymphocytes and heterogeneity revealed by MSI was observed. We postulate that a higher heterogeneity of tumors with a better prognosis could reflect the presence of heterotypic components including infiltrating immune cells, that facilitated the response to treatment.

15.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445424

RESUMO

Biomarkers for predicting individual response to radiation and for dose verification are needed to improve radiotherapy. A biomarker should optimally show signal fidelity, meaning that its level is stable and proportional to the absorbed dose. miRNA levels in human blood serum were suggested as promising biomarkers. The aim of the present investigation was to test the miRNA biomarker in leukocytes of breast cancer patients undergoing external beam radiotherapy. Leukocytes were isolated from blood samples collected prior to exposure (control); on the day when a total dose of 2 Gy, 10 Gy, or 20 Gy was reached; and one month after therapy ended (46-50 Gy in total). RNA sequencing was performed and univariate analysis was used to analyse the effect of the radiation dose on the expression of single miRNAs. To check if combinations of miRNAs can predict absorbed dose, a multinomial logistic regression model was built using a training set from eight patients (representing 40 samples) and a validation set with samples from the remaining eight patients (15 samples). Finally, Broadside, an explorative interaction mining tool, was used to extract sets of interacting miRNAs. The most prominently increased miRNA was miR-744-5p, followed by miR-4461, miR-34a-5p, miR-6513-5p, miR-1246, and miR-454-3p. Decreased miRNAs were miR-3065-3p, miR-103a-2-5p, miR-30b-3p, and miR-5690. Generally, most miRNAs showed a relatively strong inter-individual variability and different temporal patterns over the course of radiotherapy. In conclusion, miR-744-5p shows promise as a stable miRNA marker, but most tested miRNAs displayed individual signal variability which, at least in this setting, may exclude them as sensitive biomarkers of radiation response.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/radioterapia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , MicroRNAs/genética , Idoso , Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Fracionamento da Dose de Radiação , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Sequência de RNA , Resultado do Tratamento , Regulação para Cima
16.
Cancers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298629

RESUMO

Molecular components of exosomes and other classes of small extracellular vesicles (sEV) present in human biofluids are potential biomarkers with possible applicability in the early detection of lung cancer. Here, we compared the lipid profiles of serum-derived sEV from three groups of lung cancer screening participants: individuals without pulmonary alterations, individuals with benign lung nodules, and patients with screening-detected lung cancer (81 individuals in each group). Extracellular vesicles and particles were purified from serum by size-exclusion chromatography, and a fraction enriched in sEV and depleted of low-density lipoproteins (LDLs) was selected (similar sized vesicles was observed in all groups: 70-100 nm). The targeted mass-spectrometry-based approach enabled the detection of 352 lipids, including 201 compounds used in quantitative analyses. A few compounds, exemplified by Cer(42:1), i.e., a ceramide whose increased plasma/serum level was reported in different pathological conditions, were upregulated in vesicles from cancer patients. On the other hand, the contribution of phosphatidylcholines with poly-unsaturated acyl chains was reduced in vesicles from lung cancer patients. Cancer-related features detected in serum-derived sEV were different than those of the corresponding whole serum. A high heterogeneity of lipid profiles of sEV was observed, which markedly impaired the performance of classification models based on specific compounds (the three-state classifiers showed an average AUC = 0.65 and 0.58 in the training and test subsets, respectively).

17.
Cancers (Basel) ; 13(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072693

RESUMO

Serum metabolome is a promising source of molecular biomarkers that could support early detection of lung cancer in screening programs based on low-dose computed tomography. Several panels of metabolites that differentiate lung cancer patients and healthy individuals were reported, yet none of them were validated in the population at high-risk of developing cancer. Here we analyzed serum metabolome profiles in participants of two lung cancer screening studies: MOLTEST-BIS (Poland, n = 369) and SMAC-1 (Italy, n = 93). Three groups of screening participants were included: lung cancer patients, individuals with benign pulmonary nodules, and those without any lung alterations. Concentrations of about 400 metabolites (lipids, amino acids, and biogenic amines) were measured by a mass spectrometry-based approach. We observed a reduced level of lipids, in particular cholesteryl esters, in sera of cancer patients from both studies. Despite several specific compounds showing significant differences between cancer patients and healthy controls within each study, only a few cancer-related features were common when both cohorts were compared, which included a reduced concentration of lysophosphatidylcholine LPC (18:0). Moreover, serum metabolome profiles in both noncancer groups were similar, and differences between cancer patients and both groups of healthy participants were comparable. Large heterogeneity in levels of specific metabolites was observed, both within and between cohorts, which markedly impaired the accuracy of classification models: The overall AUC values of three-state classifiers were 0.60 and 0.51 for the test (MOLTEST) and validation (SMAC) cohorts, respectively. Therefore, a hypothetical metabolite-based biomarker for early detection of lung cancer would require adjustment to lifestyle-related confounding factors that putatively affect the composition of serum metabolome.

18.
Aging (Albany NY) ; 13(7): 10369-10386, 2021 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819921

RESUMO

PURPOSE: Esophageal cancer is the sixth leading cause of cancer-related death worldwide, and is associated with a poor prognosis. Stromal tumor infiltrating lymphocytes (sTIL) and certain single nucleotide polymorphisms (SNPs) have been found to be predictive of patient survival. In this study, we explored the association between SNPs and sTIL regarding the predictability of disease-free survival in patients with esophageal squamous cell carcinoma (ESCC). MATERIALS AND METHODS: We collected 969 pathologically confirmed ESCC patients from 2010 to 2013 and genotyped 101 SNPs from 59 genes. The number of sTIL for each patient was determined using an automatic algorithm. A Kruskal-Wallis test was used to determine the association between genotype and sTIL. The genotypes and clinical factors related to survival were analyzed using a Kaplan-Meier curve, Cox proportional hazards model, and log-rank test. RESULTS: The median age of the patients was 67 (42-85 years), there was a median follow-up of 851.5 days and 586 patients died. The univariable analysis showed that 10 of the 101 SNPs were associated with sTIL. Six SNPs were also associated with disease-free survival. A multivariable analysis revealed that sTIL, rs1801131, rs25487, and rs8030672 were independent prognostic markers for ESCC patients. The model combining SNPs, clinical characteristics and sTIL outperformed the model with clinical characteristics alone for predicting outcomes in ESCC patients. CONCLUSION: We discovered 10 SNPs associated with sTIL in ESCC and we built a model of sTIL, SNPs and clinical characteristics with improved prediction of survival in ESCC patients.


Assuntos
Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Linfócitos do Interstício Tumoral/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Intervalo Livre de Doença , Neoplasias Esofágicas/mortalidade , Carcinoma de Células Escamosas do Esôfago/mortalidade , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Prognóstico
19.
Transl Lung Cancer Res ; 10(2): 1083-1090, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718046

RESUMO

BACKGROUND: Optimal selection criteria for the lung cancer screening programme remain a matter of an open debate. We performed a validation study of the three most promising lung cancer risk prediction models in a large lung cancer screening cohort of 6,631 individuals from a single European centre. METHODS: A total of 6,631 healthy volunteers (aged 50-79, smoking history ≥30 pack-years) were enrolled in the MOLTEST BIS programme between 2016 and 2018. Each participant underwent a low-dose computed chest tomography scan, and selected participants underwent a further diagnostic work-up. Various lung cancer prediction models were applied to the recruited screenees, i.e., (I) Tammemagi's Prostate, Colorectal, and Ovarian Cancer Screening Trial 2012 (PLCOm2012), (II) Liverpool Lung Project (LLP) model, and (III) Bach's lung cancer risk model. Patients (I) with 6-year lung cancer probability ≥1.3% were considered as high risk in PLCOm2012 model, (II) in LLP model with 5-year lung cancer probability ≥5.0%, and (III) in Bach's model with 5-year lung cancer probability ≥2.0%. The particular model cut-off values were employed to the cohort to evaluate each model's performance in the screened population. RESULTS: Lung cancer was diagnosed in 154 (2.3%) participants. Based on the risk estimates by PLCOm2012, LLP and Bach's models there were 82.4%, 50.3% and 19.8% of the MOLTEST BIS participants, respectively, who fulfilled the above-mentioned threshold criteria of a lung cancer development probability. Of those detected with lung cancer, 97.4%, 74.0% and 44.8% were eligible for screening by PLCOm2012, LLP and Bach's model criteria, respectively. In Tammemagi's risk prediction model only four cases (2.6%) would have been missed from the group of 154 lung cancer patients primarily detected in the MOLTEST BIS. CONCLUSIONS: Lung cancer screening enrollment based on the risk prediction models is superior to NCCN Group 1 selection criteria and offers a clinically significant reduction of screenees with a comparable proportion of detected lung cancer cases. Tammemagi's risk prediction model reduces the proportion of patients eligible for inclusion to a screening programme with a minimal loss of detected lung cancer cases.

20.
Transl Lung Cancer Res ; 10(2): 1186-1199, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33718055

RESUMO

Lung cancer is responsible for more fatalities than any other cancer worldwide, with 1.76 million associated deaths reported in 2018. The key issue in the fight against this disease is the detection and diagnosis of all pulmonary nodules at an early stage. Artificial intelligence (AI) algorithms play a vital role in the automated detection, segmentation, and computer-aided diagnosis of malignant lesions. Among the existing algorithms, radiomics and deep-learning-based types appear to show the most promise. Radiomics is a growing field related to the extraction of a set of features from an image, which allows for automated classification of medical images into a predefined group. The process comprises a series of consecutive steps including image acquisition and pre-processing, segmentation of the desired region of interest, calculation of defined features, feature engineering, and construction of the classification model. The features calculated in this process are mainly shape features, as well as first- and higher-order texture features. To date, more than 100 features have been defined, although this number varies depending on the application. The greatest challenge in radiomics is building a cross-validated model based on a selected set of calculated features known as the radiomic signature. Numerous radiomic signatures have successfully been developed; however, reproducibility and clinical validity of the results obtained constitutes a considerable challenge of modern radiomics. Deep learning algorithms are another rapidly evolving technique and are recognized as a valuable tool in the field of medical image analysis for the detection, characterization, and assessment of lesions. Such an approach involves the design of artificial neural network architecture while upholding the goal of high classification accuracy. This paper illuminates the evolution and current state of artificial intelligence methods in lung imaging and the detection and diagnosis of pulmonary nodules, with a particular emphasis on radiomics and deep learning methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA