Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(6): 2800-2817, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36806960

RESUMO

RecA-mediated homologous recombination (HR) is a key mechanism for genome maintenance and plasticity in bacteria. It proceeds through RecA assembly into a dynamic filament on ssDNA, the presynaptic filament, which mediates DNA homology search and ordered DNA strand exchange. Here, we combined structural, single molecule and biochemical approaches to characterize the ATP-dependent assembly mechanism of the presynaptic filament of RecA from Streptococcus pneumoniae (SpRecA), in comparison to the Escherichia coli RecA (EcRecA) paradigm. EcRecA polymerization on ssDNA is assisted by the Single-Stranded DNA Binding (SSB) protein, which unwinds ssDNA secondary structures that block EcRecA nucleofilament growth. We report by direct microscopic analysis of SpRecA filamentation on ssDNA that neither of the two paralogous pneumococcal SSBs could assist the extension of SpRecA nucleopolymers. Instead, we found that the conserved RadA helicase promotes SpRecA nucleofilamentation in an ATP-dependent manner. This allowed us to solve the atomic structure of such a long native SpRecA nucleopolymer by cryoEM stabilized with ATPγS. It was found to be equivalent to the crystal structure of the EcRecA filament with a marked difference in how RecA mediates nucleotide orientation in the stretched ssDNA. Then, our results show that SpRecA and EcRecA HR activities are different, in correlation with their distinct ATP-dependent ssDNA binding modes.


Assuntos
Recombinases Rec A , Streptococcus pneumoniae , Trifosfato de Adenosina/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recombinases Rec A/metabolismo , Recombinases Rec A/ultraestrutura , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Microscopia Crioeletrônica
2.
Proc Natl Acad Sci U S A ; 117(32): 19168-19177, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32719135

RESUMO

The emergence of superbugs developing resistance to antibiotics and the resurgence of microbial infections have led scientists to start an antimicrobial arms race. In this context, we have previously identified an active RiPP, the Ruminococcin C1, naturally produced by Ruminococcus gnavus E1, a symbiont of the healthy human intestinal microbiota. This RiPP, subclassified as a sactipeptide, requires the host digestive system to become active against pathogenic Clostridia and multidrug-resistant strains. Here we report its unique compact structure on the basis of four intramolecular thioether bridges with reversed stereochemistry introduced posttranslationally by a specific radical-SAM sactisynthase. This structure confers to the Ruminococcin C1 important clinical properties including stability to digestive conditions and physicochemical treatments, a higher affinity for bacteria than simulated intestinal epithelium, a valuable activity at therapeutic doses on a range of clinical pathogens, mediated by energy resources disruption, and finally safety for human gut tissues.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Clostridiales/química , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/isolamento & purificação , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Peptídeos/isolamento & purificação
3.
PLoS Genet ; 12(6): e1006113, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27355362

RESUMO

Bacteria have evolved various inducible genetic programs to face many types of stress that challenge their growth and survival. Competence is one such program. It enables genetic transformation, a major horizontal gene transfer process. Competence development in liquid cultures of Streptococcus pneumoniae is synchronized within the whole cell population. This collective behavior is known to depend on an exported signaling Competence Stimulating Peptide (CSP), whose action generates a positive feedback loop. However, it is unclear how this CSP-dependent population switch is coordinated. By monitoring spontaneous competence development in real time during growth of four distinct pneumococcal lineages, we have found that competence shift in the population relies on a self-activated cell fraction that arises via a growth time-dependent mechanism. We demonstrate that CSP remains bound to cells during this event, and conclude that the rate of competence development corresponds to the propagation of competence by contact between activated and quiescent cells. We validated this two-step cell-contact sensing mechanism by measuring competence development during co-cultivation of strains with altered capacity to produce or respond to CSP. Finally, we found that the membrane protein ComD retains the CSP, limiting its free diffusion in the medium. We propose that competence initiator cells originate stochastically in response to stress, to form a distinct subpopulation that then transmits the CSP by cell-cell contact.


Assuntos
Proteínas de Bactérias/genética , Comunicação Celular/genética , Competência de Transformação por DNA/genética , Streptococcus pneumoniae/genética , Regulação Bacteriana da Expressão Gênica/genética , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Proteínas de Membrana/genética , Peptídeos/genética
4.
J Bacteriol ; 187(11): 3762-78, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15901700

RESUMO

Cysteine and methionine availability influences many processes in the cell. In bacteria, transcription of the specific genes involved in the synthesis of these two amino acids is usually regulated by different mechanisms or regulators. Pathways for the synthesis of cysteine and methionine and their interconversion were experimentally determined for Lactococcus lactis, a lactic acid bacterium commonly found in food. A new gene, yhcE, was shown to be involved in methionine recycling to cysteine. Surprisingly, 18 genes, representing almost all genes of these pathways, are under the control of a LysR-type activator, FhuR, also named CmbR. DNA microarray experiments showed that FhuR targets are restricted to this set of 18 genes clustered in seven transcriptional units, while cysteine starvation modifies the transcription level of several other genes potentially involved in oxidoreduction processes. Purified FhuR binds a 13-bp box centered 46 to 53 bp upstream of the transcriptional starts from the seven regulated promoters, while a second box with the same consensus is present upstream of the first binding box, separated by 8 to 10 bp. O-Acetyl serine increases FhuR binding affinity to its binding boxes. The overall view of sulfur amino acid metabolism and its regulation in L. lactis indicates that CysE could be a master enzyme controlling the activity of FhuR by providing its effector, while other controls at the enzymatic level appear to be necessary to compensate the absence of differential regulation of the genes involved in the interconversion of methionine and cysteine and other biosynthesis genes.


Assuntos
Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Enxofre/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Bases , Cisteína/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Mol Cell ; 11(4): 1009-20, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12718886

RESUMO

The delivery of a ring-shaped hexameric helicase onto DNA is a fundamental step of DNA replication, conserved in all cellular organisms. We report the biochemical characterization of the bacterial hexameric replicative helicase DnaC of Bacillus subtilis with that of the two replication initiation proteins DnaI and DnaB. We show that DnaI and DnaB interact physically and functionally with the DnaC helicase and mediate its functional delivery onto DNA. Thus, DnaB and DnaI form a pair of helicase loaders, revealing a two-protein strategy for the loading of a replicative helicase. We also present evidence that the DnaC helicase loading mechanism appears to be of the ring-assembly type, proceeding through the recruitment of DnaC monomers and their hexamerization around single-stranded DNA by the coordinated action of DnaI and DnaB.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , DNA Helicases/metabolismo , Replicação do DNA/genética , DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Mitose/genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA/genética , DNA Helicases/genética , DnaB Helicases , Proteínas de Escherichia coli/genética , Estrutura Molecular , Mutação/genética , Polímeros/metabolismo , Translocação Genética/genética
6.
Nucleic Acids Res ; 30(7): 1593-605, 2002 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-11917020

RESUMO

The PriA protein was identified in Escherichia coli as a factor involved in the replication of extrachromosomal elements such as bacteriophage phiX174 and plasmid pBR322. Recent data show that PriA plays an important role in chromosomal replication, by promoting reassembly of the replication machinery during reinitiation of inactivated forks. A gene encoding a product 32% identical to the E.coli PriA protein has been identified in Bacillus subtilis. To characterise this protein, designated PriA(Bs), we constructed priA(Bs) mutants. These mutants are poorly viable, filamentous and sensitive to rich medium and UV irradiation. Replication of pAMbeta1-type plasmids, which is initiated through the formation of a D-loop structure, and the activity of the primosome assembly site ssiA of plasmid pAMbeta1 are strongly affected in the mutants. The purified PriA(Bs) protein binds preferentially to the active strand of ssiA, even in the presence of B.subtilis SSB protein (SSB(Bs)). PriA(Bs) also binds stably and specifically to an artificial D-loop structure in vitro. These data show that PriA(Bs) recognises two specific substrates, ssiA and D-loops, and suggest that it triggers primosome assembly on them. PriA(Bs) also displays a single-stranded DNA-dependent ATPase activity, which is reduced in the presence of SSB(Bs), unless the ssiA sequence is present on the ssDNA substrate. Finally, PriA(Bs) is shown to be an active helicase. Altogether, these results demonstrate a clear functional identity between PriA(Ec) and PriA(Bs). However, PriA(Bs) does not complement an E.coli priA null mutant strain. This host specificity may be due to the divergence between the proteins composing the E.coli and B.subtilis PriA-dependent primosomes.


Assuntos
Bacillus subtilis/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Bactérias Gram-Positivas/metabolismo , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/genética , Sítios de Ligação , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Escherichia coli/genética , Teste de Complementação Genética , Bactérias Gram-Positivas/genética , Mutação , Proteína de Replicação A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA