Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 320(4): C602-C612, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33296286

RESUMO

Cholinesterase inhibitors are used in postmenopausal women for the treatment of neurodegenerative diseases. Despite their widespread use in the clinical practice, little is known about the impact of augmented cholinergic signaling on cardiac function under reduced estrogen conditions. To address this gap, we subjected a genetically engineered murine model of systemic vesicular acetylcholine transporter overexpression (Chat-ChR2) to ovariectomy and evaluated cardiac parameters. Left-ventricular function was similar between Chat-ChR2 and wild-type (WT) mice. Following ovariectomy, WT mice showed signs of cardiac hypertrophy. Conversely, ovariectomized (OVX) Chat-ChR2 mice evolved to cardiac dilation and failure. Transcript levels for cardiac stress markers atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) were similarly upregulated in WT/OVX and Chat-ChR2/OVX mice. 17ß-Estradiol (E2) treatment normalized cardiac parameters in Chat-ChR2/OVX to the Chat-ChR2/SHAM levels, providing a link between E2 status and the aggravated cardiac response in this model. To investigate the cellular basis underlying the cardiac alterations, ventricular myocytes were isolated and their cellular area and contractility were assessed. Myocytes from WT/OVX mice were wider than WT/SHAM, an indicative of concentric hypertrophy, but their fractional shortening was similar. Conversely, Chat-ChR2/OVX myocytes were elongated and presented contractile dysfunction. E2 treatment again prevented the structural and functional changes in Chat-ChR2/OVX myocytes. We conclude that hypercholinergic mice under reduced estrogen conditions do not develop concentric hypertrophy, a critical compensatory adaptation, evolving toward cardiac dilation and failure. This study emphasizes the importance of understanding the consequences of cholinesterase inhibition, used clinically to treat dementia, for cardiac function in postmenopausal women.


Assuntos
Acetilcolina/metabolismo , Fibras Colinérgicas/metabolismo , Estrogênios/deficiência , Coração/inervação , Hipertrofia Ventricular Esquerda/metabolismo , Miócitos Cardíacos/metabolismo , Disfunção Ventricular Esquerda/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/prevenção & controle , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Contração Miocárdica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ovariectomia , Transdução de Sinais , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Proteínas Vesiculares de Transporte de Acetilcolina/genética
2.
Endocrinology ; 157(1): 323-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26556532

RESUMO

In rodents, kisspeptin neurons in the rostral periventricular area of the third ventricle (RP3V) of the preoptic area are considered to provide a major stimulatory input to the GnRH neuronal network that is responsible for triggering the preovulatory LH surge. Noradrenaline (NA) is one of the main modulators of GnRH release, and NA fibers are found in close apposition to kisspeptin neurons in the RP3V. Our objective was to interrogate the role of NA signaling in the kisspeptin control of GnRH secretion during the estradiol induced LH surge in ovariectomized rats, using prazosin, an α1-adrenergic receptor antagonist. In control rats, the estradiol-induced LH surge at 17 hours was associated with a significant increase in GnRH and kisspeptin content in the median eminence with the increase in kisspeptin preceding that of GnRH and LH. Prazosin, administered 5 and 3 hours prior to the predicted time of the LH surge truncated the LH surge and abolished the rise in GnRH and kisspeptin in the median eminence. In the preoptic area, prazosin blocked the increases in Kiss1 gene expression and kisspeptin content in association with a disruption in the expression of the clock genes, Per1 and Bmal1. Together these findings demonstrate for the first time that NA modulates kisspeptin synthesis in the RP3V through the activation of α1-adrenergic receptors prior to the initiation of the LH surge and indicate a potential role of α1-adrenergic signaling in the circadian-controlled pathway timing of the preovulatory LH surge.


Assuntos
Regulação da Expressão Gênica , Kisspeptinas/agonistas , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Norepinefrina/metabolismo , Área Pré-Óptica/metabolismo , Regulação para Cima , Fatores de Transcrição ARNTL/agonistas , Fatores de Transcrição ARNTL/antagonistas & inibidores , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Estradiol/farmacologia , Terapia de Reposição de Estrogênios , Feminino , Fase Folicular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Kisspeptinas/antagonistas & inibidores , Kisspeptinas/genética , Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Ovariectomia/efeitos adversos , Proteínas Circadianas Period/agonistas , Proteínas Circadianas Period/antagonistas & inibidores , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Prazosina/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Ratos Wistar , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
3.
Endocrinology ; 154(1): 363-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23150494

RESUMO

The role of norepinephrine (NE) in regulation of LH is still controversial. We investigated the role played by NE in the positive feedback of estradiol and progesterone. Ovarian-steroid control over NE release in the preoptic area (POA) was determined using microdialysis. Compared with ovariectomized (OVX) rats, estradiol-treated OVX (OVX+E) rats displayed lower release of NE in the morning but increased release coincident with the afternoon surge of LH. OVX rats treated with estradiol and progesterone (OVX+EP) exhibited markedly greater NE release than OVX+E rats, and amplification of the LH surge. The effect of NE on LH secretion was confirmed using reverse microdialysis. The LH surge and c-Fos expression in anteroventral periventricular nucleus neurons were significantly increased in OVX+E rats dialyzed with 100 nm NE in the POA. After Fluoro-Gold injection in the POA, c-Fos expression in Fluoro-Gold/tyrosine hydroxylase-immunoreactive neurons increased during the afternoon in the A2 of both OVX+E and OVX+EP rats, in the locus coeruleus (LC) of OVX+EP rats, but was unchanged in the A1. The selective lesion of LC terminals, by intracerebroventricular N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine, reduced the surge of LH in OVX+EP but not in OVX+E rats. Thus, estradiol and progesterone activate A2 and LC neurons, respectively, and this is associated with the increased release of NE in the POA and the magnitude of the LH surge. NE stimulates LH secretion, at least in part, through activation of anteroventral periventricular neurons. These findings contribute to elucidation of the role played by NE during the positive feedback of ovarian steroids.


Assuntos
Núcleos Anteriores do Tálamo/efeitos dos fármacos , Núcleos Anteriores do Tálamo/metabolismo , Hormônio Luteinizante/metabolismo , Norepinefrina/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Estradiol/farmacologia , Feminino , Imuno-Histoquímica , Microdiálise , Ovariectomia , Progesterona/farmacologia , Radioimunoensaio , Ratos , Ratos Wistar
4.
Brain Res Bull ; 88(6): 566-73, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22732530

RESUMO

In female rats, stimulation of the uterine cervix during mating induces two daily surges of prolactin. Inhibition of hypothalamic dopamine release and stimulation of oxytocin neurons in the paraventricular nucleus (PVN) are required for prolactin secretion. We aim to better understand how stimulation of the uterine cervix is translated into two daily prolactin surges. We hypothesize that noradrenergic neurons in the A1, A2, and locus coeruleus (LC) are responsible for conveying the peripheral stimulus to the PVN. In order to determine whether projections from these neurons to the PVN are activated by cervical stimulation (CS), we injected a retrograde tracer, Fluoro-Gold (FG), into the PVN of ovariectomized rats. Fourteen days after injection, animals were submitted to artificial CS or handling and perfused with a fixative solution. Brains were removed and sectioned from the A1, A2, and LC for c-Fos, tyrosine hydroxylase (TH), and FG triple-labeling using immunohistochemistry. CS increased the percentage of TH/FG+ double-labeled neurons expressing c-Fos in the A1 and LC. CS also increased the percentage of TH+ neurons expressing c-Fos within the A1 and A2, independent of their projections to the PVN. Our data reinforce the significant contributions of the A1 and A2 to carry sensory information during mating, and provide evidence of a functional pathway in which CS activates A1 and LC neurons projecting to the PVN, which is potentially involved in the translation of CS into two daily prolactin surges.


Assuntos
Colo do Útero/inervação , Ritmo Circadiano/fisiologia , Copulação/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Locus Cerúleo/fisiologia , Plexo Lombossacral/fisiologia , Bulbo/fisiologia , Vias Neurais/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Animais , Transporte Axonal , Feminino , Corantes Fluorescentes , Lactotrofos/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Bulbo/citologia , Bulbo/metabolismo , Proteínas do Tecido Nervoso/análise , Vias Neurais/ultraestrutura , Neurônios/química , Neurônios/metabolismo , Ovariectomia , Ocitocina/metabolismo , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-fos/análise , Ratos , Ratos Sprague-Dawley , Estilbamidinas , Tirosina 3-Mono-Oxigenase/análise
5.
Neuroendocrinology ; 91(2): 179-88, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19887760

RESUMO

BACKGROUND/AIMS: Cervical stimulation induces a circadian rhythm of prolactin secretion and antiphase dopamine release. The suprachiasmatic nucleus (SCN) controls this rhythm, and we propose that it does so through clock gene expression within the SCN. METHODS: To test this hypothesis, serial blood samples were taken from animals injected with an antisense deoxyoligonucleotide cocktail for clock genes (generated against the 5' transcription start site and 3' cap site of per1, per2, and clock mRNA) or with a random-sequence deoxyoligonucleotide in the SCN. To determine whether disruption of clock genes in the SCN compromises the neural mechanism controlling prolactin secretion, we sacrificed another group of rats (under the same treatments) at 12.00 or 17.00 h. Dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) were measured using HPLC/electrochemical detection in the median eminence as well as the intermediate and the neural lobe of the pituitary gland, and the DOPAC:dopamine ratio was used as an index of dopamine activity. Vasoactive intestinal polypeptide (VIP) content was determined in tissue punches of the SCN and paraventricular nucleus (PVN), an SCN efferent. RESULTS: Treatment with clock gene antisense deoxyoligonucleotide cocktail abolished both the diurnal and nocturnal prolactin surges induced by cervical stimulation. This treatment abolished the antiphase relationship established by cervical stimulation between dopamine neuronal activity and prolactin secretion. Also, VIP content increased in the SCN and decreased in the PVN. CONCLUSION: These results suggest that the SCN clock determines the circadian rhythm of prolactin secretion in cervically stimulated rats by regulating dopamine neuronal activity and VIP inputs to the PVN.


Assuntos
Relógios Biológicos/fisiologia , Ritmo Circadiano/fisiologia , Dopamina/metabolismo , Prolactina/sangue , Peptídeo Intestinal Vasoativo/metabolismo , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Ovariectomia , Núcleo Hipotalâmico Paraventricular/fisiologia , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleo Supraquiasmático/fisiologia
6.
Endocrinology ; 150(5): 2292-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19106214

RESUMO

In female rats, estradiol (E(2)) and suckling induce prolactin (PRL) secretion. This involves inhibition of hypothalamic dopaminergic tone and stimulation by a PRL-releasing hormone, possibly oxytocin (OT). Infusing an OT antagonist (OTA) i.v., we evaluated the role of OT on suckling- and E(2)-induced PRL secretion. Three days after parturition at 0900 h, lactating dams were fitted with 24-h osmotic minipumps filled with saline or OTA. On d 5 of lactation, pups were separated from their dams for 6 h. Immediately or 20 min after the resumption of suckling, dam trunk blood was collected. Also, ovariectomized (OVX) rats were treated with E(2) (OVE) and OTA at 1000 h on d 1. Blood samples were obtained from 1300 to 2100 h on d 2 for PRL measurements. Additionally, OVX rats were evaluated on d 2 after receiving progesterone (P(4)). OTA blocked suckling and E(2)-induced release of PRL but not that induced by E(2)+P(4). Pups from treated dams failed to gain weight when allowed to nurse for 20 min on d 5 but gained more than 7 g when nursed on d 7 of lactation, indicating that the OTA was active 48 h later. Western blot analysis showed that E(2) treatment increased OT receptors in the anterior pituitary when compared with OVX animals. No further increase was observed in response to the P(4), suggesting that the enhancing effect of P(4) on E(2)-induced PRL release may act through mechanisms independent of OT. These data demonstrate the role of OT in the control of suckling and steroid-induced PRL secretion.


Assuntos
Estradiol/farmacologia , Ornipressina/análogos & derivados , Ocitocina/antagonistas & inibidores , Progesterona/farmacologia , Prolactina/metabolismo , Comportamento de Sucção/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Animais Lactentes , Feminino , Bombas de Infusão , Lactação/efeitos dos fármacos , Ornipressina/administração & dosagem , Ornipressina/farmacologia , Ovariectomia/veterinária , Ocitocina/fisiologia , Ratos , Ratos Sprague-Dawley
7.
Brain Res ; 1196: 65-73, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18234164

RESUMO

In female rats, estradiol is responsible for a circadian secretory prolactin (PRL) pattern which requires an intact suprachiasmatic nucleus (SCN). SCN outputs involved in this secretory profile remain elusive. Because oxytocin has been proposed to stimulate PRL secretion, we investigated whether the projections of vasoactive intestinal polypeptide (VIP) from the SCN to neurons producing oxytocin in the paraventricular and periventricular nuclei (PVN and PeVN, respectively) are responsible for timing PRL surges induced by estradiol (E(2)). E(2)-treated ovariectomized rats received an injection of antisense or random-sequence oligodeoxynucleotide for VIP in the SCN and blood samples were taken for PRL measurements by radioimmunoassay. Additionally, the percentage of oxytocin-positive neurons immunoreactive to FOS-related antigens was determined in the PVN and PeVN, as an index of neuronal activity. In the PVN, oxytocinergic neuronal activity increased in the early evening regardless of E(2) treatment, whereas E(2) induced an increase of activity in the PeVN. VIP antisense attenuated this increase observed in both neuronal populations. Additionally, in the PeVN, VIP antisense advanced this increase by 2 h (from 19:00 h to 17:00 h). This same effect was observed in the PRL surge that occurred at 17:00 h in the VIP antisense injected animals. Thus, the SCN influences the precise timing of the E(2)-induced PRL surge via VIP projections to oxytocinergic neurons of the PVN and PeVN.


Assuntos
Estradiol/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ocitocina/metabolismo , Prolactina/metabolismo , Peptídeo Intestinal Vasoativo/farmacologia , Análise de Variância , Animais , Ritmo Circadiano/efeitos dos fármacos , Interações Medicamentosas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Ovariectomia , Núcleo Hipotalâmico Paraventricular/fisiologia , Radioimunoensaio/métodos , Ratos , Ratos Sprague-Dawley , Núcleo Supraquiasmático/citologia , Fatores de Tempo
8.
Am J Physiol Endocrinol Metab ; 293(5): E1325-34, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17726143

RESUMO

The nature of the circadian signal from the suprachiasmatic nucleus (SCN) required for prolactin (PRL) surges is unknown. Because the SCN neuronal circadian rhythm is determined by a feedback loop of Period (Per) 1, Per2, and circadian locomotor output cycles kaput (Clock) gene expressions, we investigated the effect of SCN rhythmicity on PRL surges by disrupting this loop. Because lesion of the locus coeruleus (LC) abolishes PRL surges and these neurons receive SCN projections, we investigated the role of SCN rhythmicity in the LC neuronal circadian rhythm as a possible component of the circadian mechanism regulating PRL surges. Cycling rats on proestrous day and estradiol-treated ovariectomized rats received injections of antisense or random-sequence deoxyoligonucleotide cocktails for clock genes (Per1, Per2, and Clock) in the SCN, and blood samples were taken for PRL measurements. The percentage of tyrosine hydroxylase-positive neurons immunoreactive to Fos-related antigen (FRA) was determined in ovariectomized rats submitted to the cocktail injections and in a 12:12-h light:dark (LD) or constant dark (DD) environment. The antisense cocktail abolished both the proestrous and the estradiol-induced PRL surges observed in the afternoon and the increase of FRA expression in the LC neurons at Zeitgeber time 14 in LD and at circadian time 14 in DD. Because SCN afferents and efferents were probably preserved, the SCN rhythmicity is essential for the magnitude of daily PRL surges in female rats as well as for LC neuronal circadian rhythm. SCN neurons therefore determine PRL secretory surges, possibly by modulating LC circadian neuronal activity.


Assuntos
Ritmo Circadiano/fisiologia , Ciclo Estral/fisiologia , Locus Cerúleo/fisiologia , Prolactina/metabolismo , Proteínas Proto-Oncogênicas c-fos/biossíntese , Núcleo Supraquiasmático/fisiologia , Transativadores/fisiologia , Animais , Proteínas CLOCK , Ritmo Circadiano/genética , Ingestão de Líquidos/fisiologia , Estradiol/farmacologia , Proteínas do Olho/fisiologia , Feminino , Imuno-Histoquímica , Locus Cerúleo/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Ovariectomia , Proteínas Circadianas Period , Proteínas Proto-Oncogênicas c-fos/fisiologia , Ratos , Ratos Sprague-Dawley , Transativadores/genética
9.
Endocrinology ; 148(10): 4649-57, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17615142

RESUMO

Cervical stimulation induces two daily rhythmic prolactin surges, nocturnal and diurnal, which persist for several days. We have shown that a bolus injection of oxytocin initiates a similar prolactin rhythm, which persists despite low levels of oxytocin after injection. This suggests that oxytocin may trigger the cervical stimulation-induced rhythmic prolactin surges. To investigate this hypothesis, we infused an oxytocin antagonist that does not cross the blood-brain barrier for 24 h before and after cervical stimulation and measured serum prolactin. We also measured dopaminergic neuronal activity because mathematical modeling predicted that this activity would be low in the presence of the oxytocin antagonist. We thus tested this hypothesis by measuring dopaminergic neuronal activity in the tuberoinfundibular, periventricular hypophyseal, and tuberohypophyseal dopaminergic neurons. Infusion of oxytocin antagonist before cervical stimulation abolished prolactin surges, and infusion of oxytocin antagonist after cervical stimulation abolished the diurnal and significantly decreased the nocturnal surges of prolactin. The rhythmic prolactin surges returned after the clearance of the oxytocin antagonist. Hypothalamic dopaminergic activity was elevated in antiphase with prolactin surges, and the antiphase elevation was abolished by the oxytocin antagonist in the tuberoinfundibular and tuberohypophyseal dopaminergic neurons, consistent with the mathematical model. These findings suggest that oxytocin is a physiologically relevant prolactin-releasing factor. However, the cervical stimulation-induced prolactin surges are maintained even in the absence of oxytocin actions at the lactotroph, which strongly suggests the maintenance of prolactin surges are not dependent upon oxytocin actions at the pituitary gland.


Assuntos
Colo do Útero/fisiologia , Lactotrofos/metabolismo , Ovariectomia , Ocitocina/fisiologia , Prolactina/metabolismo , Animais , Ritmo Circadiano , Dopamina/metabolismo , Estimulação Elétrica , Feminino , Eminência Mediana/citologia , Eminência Mediana/metabolismo , Modelos Biológicos , Neurônios/fisiologia , Ornipressina/análogos & derivados , Ornipressina/farmacologia , Ocitocina/antagonistas & inibidores , Adeno-Hipófise Parte Intermédia/citologia , Adeno-Hipófise Parte Intermédia/metabolismo , Neuro-Hipófise/citologia , Neuro-Hipófise/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA