Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2611, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521783

RESUMO

The dense O-glycosylation of mucins plays an important role in the defensive properties of the mucus hydrogel. Aberrant glycosylation is often correlated with inflammation and pathology such as COPD, cancer, and Crohn's disease. The inherent complexity of glycans and the diversity in the O-core structure constitute fundamental challenges for the analysis of mucin-type O-glycans. Due to coexistence of multiple isomers, multidimensional workflows such as LC-MS are required. To separate the highly polar carbohydrates, porous graphitized carbon is often used as a stationary phase. However, LC-MS workflows are time-consuming and lack reproducibility. Here we present a rapid alternative for separating and identifying O-glycans released from mucins based on trapped ion mobility mass spectrometry. Compared to established LC-MS, the acquisition time is reduced from an hour to two minutes. To test the validity, the developed workflow was applied to sputum samples from cystic fibrosis patients to map O-glycosylation features associated with disease.


Assuntos
Mucinas , Espectrometria de Massas em Tandem , Humanos , Mucinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Polissacarídeos/química , Glicosilação
2.
Acc Chem Res ; 54(10): 2445-2456, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33900743

RESUMO

Ion mobility spectrometry and gas-phase IR action spectroscopy are two structure-sensitive mass-spectrometric methods becoming more popular recently. While ion mobility spectrometry provides collision cross sections as a size and shape dependent parameter of an ion of interest, gas-phase spectroscopy identifies functional groups and is capable of distinguishing different isomers. Both methods have recently found application for the investigation of supramolecular assemblies. We here highlight several aspects.Starting with the characterization of switching states in azobenzene photoswitches as well as redox-switchable lasso-type pseudorotaxanes, structures of isomers can be distinguished and mechanistic details analyzed. Ion mobility mass spectrometry in combination with gas-phase H/D-exchange reactions unravels subtle structural details as described for the chiral recognition of crown ether amino acid complexes. Gas-phase IR spectroscopy allows identification of details of the binding patterns in dimeric amino acid clusters as well as the serine octamer. This research can be extended into the analysis of peptide assemblies that are of medical relevance, for example, in Alzheimer's disease, and into a general hydrophobicity scale for natural as well as synthetic amino acids. The development of ultracold gas-phase spectroscopy that for example makes use of ions trapped in liquid helium droplets provides access to very well resolved spectra. The combination of ion mobility separation of ions with subsequent spectroscopic analysis even permits separation of different isomers and studying them separately with respect to their structure. This represents a great advantage of these gas-phase methods over solution experiments, in which the supramolecular complexes under study typically equilibrate and thus prevent a separate investigation of different isomers. At the end of this overview, we will discuss larger and more complex supramolecules, among them giant halogen-bonded cages and complex intertwined topologies such as molecular knots and Solomon links.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA