Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18293, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880299

RESUMO

Nano-scale extracellular vesicles are lipid-bilayer delimited particles that are naturally secreted by all cells and have emerged as valuable biomarkers for a wide range of diseases. Efficient isolation of small extracellular vesicles while maintaining yield and purity is crucial to harvest their potential in diagnostic, prognostic, and therapeutic applications. Most conventional methods of isolation suffer from significant shortcomings, including low purity or yield, long duration, need for large sample volumes, specialized equipment, trained personnel, and high costs. To address some of these challenges, our group has reported a novel insulator-based dielectrophoretic device for rapid isolation of small extracellular vesicles from biofluids and cell culture media based on their size and dielectric properties. In this study, we report a comprehensive characterization of small extracellular vesicles isolated from cancer-patients' biofluids at a twofold enrichment using the device. The three-fold characterization that was performed using conventional flow cytometry, advanced imaging flow cytometry, and microRNA sequencing indicated high yield and purity of the isolated small extracellular vesicles. The device thus offers an efficient platform for rapid isolation while maintaining biomolecular integrity.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Biomarcadores , Neoplasias/diagnóstico , Dispositivos Lab-On-A-Chip
2.
Development ; 150(9)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37070767

RESUMO

The in vitro differentiation of pluripotent stem cells into human intestinal organoids (HIOs) has served as a powerful means for creating complex three-dimensional intestinal structures. Owing to their diverse cell populations, transplantation into an animal host is supported with this system and allows the temporal formation of fully laminated structures, including crypt-villus architecture and smooth muscle layers that resemble native human intestine. Although the endpoint of HIO engraftment has been well described, here we aim to elucidate the developmental stages of HIO engraftment and establish whether it parallels fetal human intestinal development. We analyzed a time course of transplanted HIOs histologically at 2, 4, 6 and 8 weeks post-transplantation, and demonstrated that HIO maturation closely resembles key stages of fetal human intestinal development. We also utilized single-nuclear RNA sequencing to determine and track the emergence of distinct cell populations over time, and validated our transcriptomic data through in situ protein expression. These observations suggest that transplanted HIOs do indeed recapitulate early intestinal development, solidifying their value as a human intestinal model system.


Assuntos
Intestinos , Células-Tronco Pluripotentes , Animais , Humanos , Mucosa Intestinal/metabolismo , Organoides , Diferenciação Celular
3.
Hepatology ; 74(2): 864-878, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33559243

RESUMO

BACKGROUND AND AIMS: Biliary atresia (BA) is a devastating cholangiopathy of infancy. Upon diagnosis, surgical reconstruction by Kasai hepatoportoenterostomy (HPE) restores biliary drainage in a subset of patients, but most patients develop fibrosis and progress to end-stage liver disease requiring liver transplantation for survival. In the murine model of BA, rhesus rotavirus (RRV) infection of newborn pups results in a cholangiopathy paralleling that of human BA. High-mobility group box 1 (HMGB1) is an important member of the danger-associated molecular patterns capable of mediating inflammation during infection-associated responses. In this study, we investigated the role of HMGB1 in BA pathogenesis. APPROACH AND RESULTS: In cholangiocytes, RRV induced the expression and release of HMGB1 through the p38 mitogen-activated protein kinase signaling pathway, and inhibition of p38 blocked HMGB1 release. Treatment of cholangiocytes with ethyl pyruvate suppressed the release of HMGB1. Administration of glycyrrhizin in vivo decreased symptoms and increased survival in the murine model of BA. HMGB1 levels were measured in serum obtained from infants with BA enrolled in the PROBE and START studies conducted by the Childhood Liver Disease Research Network. High HMGB1 levels were found in a subset of patients at the time of HPE. These patients had higher bilirubin levels 3 months post-HPE and a lower survival of their native liver at 2 years. CONCLUSIONS: These results suggest that HMGB1 plays a role in virus induced BA pathogenesis and could be a target for therapeutic interventions in a subset of patients with BA and high HMGB1.


Assuntos
Atresia Biliar/patologia , Doença Hepática Terminal/epidemiologia , Proteína HMGB1/sangue , Proteína HMGB1/metabolismo , Infecções por Rotavirus/patologia , Animais , Animais Recém-Nascidos , Ductos Biliares/metabolismo , Ductos Biliares/patologia , Ductos Biliares/cirurgia , Atresia Biliar/sangue , Atresia Biliar/cirurgia , Atresia Biliar/virologia , Bilirrubina/sangue , Biomarcadores/sangue , Linhagem Celular , Pré-Escolar , Chlorocebus aethiops , Modelos Animais de Doenças , Doença Hepática Terminal/patologia , Células Epiteliais , Humanos , Lactente , Recém-Nascido , Camundongos , Portoenterostomia Hepática , Medição de Risco , Fatores de Risco , Rotavirus/metabolismo , Rotavirus/patogenicidade , Infecções por Rotavirus/virologia , Resultado do Tratamento
4.
PLoS One ; 15(8): e0237885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32853234

RESUMO

Our group has developed two transplantation models for the engraftment of Human Intestinal Organoids (HIOs): the renal subcapsular space (RSS) and the mesentery each with specific benefits for study. While engraftment at both sites generates laminated intestinal structures, a direct comparison between models has not yet been performed. Embryonic stem cells were differentiated into HIOs, as previously described. HIOs from the same batch were transplanted on the same day into either the RSS or mesentery. 10 weeks were allowed for engraftment and differentiation, at which time they were harvested and assessed. Metrics for comparison included: mortality, engraftment rate, gross size, number and grade of lumens, and expression of markers specific to epithelial differentiation, mesenchymal differentiation, and carbohydrate metabolism. Mortality was significantly increased when undergoing mesentery transplantation, however engraftment was significantly higher. Graft sizes were similar between groups. Morphometric parameters were similar between groups, however m-tHIOs presented with significantly fewer lumens than k-tHIO. Transcript and protein level expression of markers specific to epithelial differentiation, mesenchymal differentiation, and carbohydrate metabolism were similar between groups. Transplantation into both sites yields viable tissue of similar quality based on our assessments with enhanced engraftment and a dominant lumen for uniform study benefiting the mesenteric site and survival benefiting RSS.


Assuntos
Intestinos/transplante , Organoides/transplante , Animais , Metabolismo dos Carboidratos , Linhagem da Célula , Células Epiteliais/citologia , Sobrevivência de Enxerto , Humanos , Masculino , Camundongos Endogâmicos NOD , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Methods Mol Biol ; 2171: 201-214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32705643

RESUMO

Human intestinal organoids (HIOs), derived from pluripotent stem cells, are a new tool to gain insights in gastrointestinal development, physiology, and associated diseases. Herein, we present a method for renal transplantation of HIOs in immunocompromised mice and subsequent analysis to study intestinal epithelial cell proliferation. In addition, we describe how to generate enteroids from transplanted HIOs. The method highlights the specific steps to successful engraftment and provides insight into the study of human intestinal stem cells.


Assuntos
Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Organoides/citologia , Organoides/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 319(3): G375-G381, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658619

RESUMO

Gastrointestinal organoids are an exciting new tool for modeling human development, physiology, and disease in human tissue. Derived from pluripotent stem cells, gastrointestinal organoids consist of epithelial and mesenchymal cells organized in an intricate, three-dimensional structure that recapitulates the physiology and microscopic anatomy of the human gastrointestinal (GI) tract. In vitro derivation of gastrointestinal organoids from definitive endoderm has permitted an exploration of the complex signaling pathways required for the initial maturation of each individual gastrointestinal organ. Further maturation beyond an early fetal state currently requires transplantation into an immunocompromised host. Transplantation-induced maturation provides an opportunity to functionally interrogate the key mechanisms underlying development of the human GI tract. Gastrointestinal organoids can also be used to model human diseases and ultimately may serve as the basis for developing novel, personalized therapies for human intestinal diseases.


Assuntos
Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Células-Tronco/fisiologia , Animais , Gastroenteropatias/fisiopatologia , Humanos , Organoides
7.
Cell Mol Gastroenterol Hepatol ; 10(1): 171-190, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32145469

RESUMO

BACKGROUND & AIMS: Shiga toxin (Stx)-producing Escherichia coli (eg, O157:H7) infection produces bloody diarrhea, while Stx inhibits protein synthesis and causes the life-threatening systemic complication of hemolytic uremic syndrome. The murine intestinal tract is resistant to O157:H7 and Stx, and human cells in culture fail to model the complex tissue responses to intestinal injury. We used genetically identical, human stem cell-derived intestinal tissues of varying complexity to study Stx toxicity in vitro and in vivo. METHODS: In vitro susceptibility to apical or basolateral exposure to Stx was assessed using human intestinal organoids (HIOs) derived from embryonic stem cells, or enteroids derived from multipotent intestinal stem cells. HIOs contain a lumen, with a single layer of differentiated epithelium surrounded by mesenchymal cells. Enteroids only contain epithelium. In vivo susceptibility was assessed using HIOs, with or without an enteric nervous system, transplanted into mice. RESULTS: Stx induced necrosis and apoptotic death in both epithelial and mesenchymal cells. Responses that require protein synthesis (cellular proliferation and wound repair) also were observed. Epithelial barrier function was maintained even after epithelial cell death was seen, and apical to basolateral translocation of Stx was seen. Tissue cross-talk, in which mesenchymal cell damage caused epithelial cell damage, was observed. Stx induced mesenchymal expression of the epithelial marker E-cadherin, the initial step in mesenchymal-epithelial transition. In vivo responses of HIO transplants injected with Stx mirrored those seen in vitro. CONCLUSIONS: Intestinal tissue responses to protein synthesis inhibition by Stx are complex. Organoid models allow for an unprecedented examination of human tissue responses to a deadly toxin.


Assuntos
Células Epiteliais/patologia , Infecções por Escherichia coli/patologia , Síndrome Hemolítico-Urêmica/patologia , Toxinas Shiga/toxicidade , Animais , Apoptose , Linhagem Celular , Modelos Animais de Doenças , Infecções por Escherichia coli/microbiologia , Síndrome Hemolítico-Urêmica/microbiologia , Células-Tronco Embrionárias Humanas , Humanos , Mucosa Intestinal , Camundongos , Necrose , Organoides , Toxinas Shiga/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade
8.
Surgery ; 164(4): 643-650, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30072255

RESUMO

BACKGROUND: We previously described the development of human intestinal organoids from pluripotent stem cells, as well as their in vivo maturation when transplanted into the mouse kidney capsule. While sufficient for certain aspects of study, this model has limitations. Herein, we describe an alternative model of human intestinal organoids transplantation into the mouse mesentery. We hypothesize that efficient engraftment and marked differentiation of human intestinal organoids will be similar to our kidney model yet in a more anatomically appropriate location allowing for improved in vivo modeling. METHODS: Human intestinal organoids were generated by directed differentiation of H1 embryonic stem cells. Human intestinal organoids were then transplanted into the mesentery of immunosuppressed mice. Gross and histologic analysis of tissue was performed. RESULTS: Human intestinal organoids were transplanted into the mouse mesentery and allowed to grow for 10 weeks. Mouse survival was 85%, and among the surviving mice, 82% of transplanted human intestinal organoids successfully engrafted. Upon graft harvest, transplanted HIOs were larger than in vitro human intestinal organoids (1.75 mm vs 6.27 mm, P < .0001) and grew along a vascular pedicle, allowing for interventions and reconstructive surgeries to access the human intestinal organoid lumen. Histologic analyses of transplanted human intestinal organoids confirmed the presence of major cell types, as well as stem cell activity. CONCLUSIONS: The mouse mesentery is a viable location for the transplantation of human intestinal organoids, yielding grafts of reproducible size and quality. This improved model serves to advance functional and translational studies of human intestinal organoids.


Assuntos
Mucosa Intestinal/transplante , Mesentério/cirurgia , Organoides/transplante , Animais , Humanos , Masculino , Camundongos , Organoides/fisiologia , Transplante Heterólogo
9.
Methods Mol Biol ; 1597: 229-245, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28361322

RESUMO

The utilization of human pluripotent stem cells (hPSCs) offers new avenues in the generation of organs and opportunities to understand development and diseases. The hPSC-derived human intestinal organoids (HIOs) provide a new tool to gain insights in small intestinal development, physiology, and associated diseases. Herein, we provide a method for orthotropic transplantation of HIOs in immunocompromised mice. This method highlights the specific steps to successful engraftment and provides insight into the study of bioengineered human small intestine.


Assuntos
Intestino Delgado/citologia , Animais , Diferenciação Celular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Biológicos , Organoides/citologia , Células-Tronco Pluripotentes/citologia
10.
Nat Med ; 20(11): 1310-4, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25326803

RESUMO

Differentiation of human pluripotent stem cells (hPSCs) into organ-specific subtypes offers an exciting avenue for the study of embryonic development and disease processes, for pharmacologic studies and as a potential resource for therapeutic transplant. To date, limited in vivo models exist for human intestine, all of which are dependent upon primary epithelial cultures or digested tissue from surgical biopsies that include mesenchymal cells transplanted on biodegradable scaffolds. Here, we generated human intestinal organoids (HIOs) produced in vitro from human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) that can engraft in vivo. These HIOs form mature human intestinal epithelium with intestinal stem cells contributing to the crypt-villus architecture and a laminated human mesenchyme, both supported by mouse vasculature ingrowth. In vivo transplantation resulted in marked expansion and maturation of the epithelium and mesenchyme, as demonstrated by differentiated intestinal cell lineages (enterocytes, goblet cells, Paneth cells, tuft cells and enteroendocrine cells), presence of functional brush-border enzymes (lactase, sucrase-isomaltase and dipeptidyl peptidase 4) and visible subepithelial and smooth muscle layers when compared with HIOs in vitro. Transplanted intestinal tissues demonstrated digestive functions as shown by permeability and peptide uptake studies. Furthermore, transplanted HIO-derived tissue was responsive to systemic signals from the host mouse following ileocecal resection, suggesting a role for circulating factors in the intestinal adaptive response. This model of the human small intestine may pave the way for studies of intestinal physiology, disease and translational studies.


Assuntos
Intestino Delgado/fisiologia , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , Adulto , Animais , Ceco/cirurgia , Linhagem Celular , Humanos , Íleo/cirurgia , Técnicas In Vitro , Intestino Delgado/transplante , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/citologia
11.
Gene Expr Patterns ; 15(2): 96-103, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24929031

RESUMO

Canalicular bile is secreted by hepatocytes and then passes through the intrahepatic bile ducts, comprised of cholangiocytes, to reach the extrahepatic biliary system. In addition to providing a conduit for bile to drain from the liver, cholangiocytes play an active role in modifying bile composition. Bile formation is the result of a series of highly coordinated intricate membrane-transport interactions. Proper systematic regulation of solute and water transport is critical for both digestion and the health of the liver, yet our knowledge of cholangiocyte water and ion transporters and their relative expression patterns remains incomplete. In this report, we provide a comprehensive expression profile of the aquaporin (AQP) family and three receptors/channels known to regulate ion transport in the murine cholangiocyte. In murine intrahepatic cholangiocytes, we found mRNA expression for all twelve of the members of the AQP family of proteins and found temporal changes in the expression profile occurring with age. Using AQP4, an established marker within cholangiocyte physiology, we found that AQP2, AQP5 and AQP6 expression levels to be significantly different between the neonatal and adult time points. Furthermore, there were distinct temporal expression patterns, with that of AQP12 unique in that its expression level decreased with age, whilst the majority of AQPs followed an increasing expression level trend with age. Of the three receptors/channels regulating ion transport in the murine cholangiocyte, only the cystic fibrosis transmembrane conductance regulator was found to follow a consistent trend of decreasing expression coincident with age. We have further validated AQP3 and AQP8 protein localization in both hepatocytes and cholangiocytes. This study emphasizes the need to further appreciate and consider the differences in cholangiocyte biology when treating neonatal and adult hepatobiliary diseases.


Assuntos
Aquaporina 1/metabolismo , Aquaporina 3/metabolismo , Aquaporinas/metabolismo , Ductos Biliares Intra-Hepáticos/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Animais , Animais Recém-Nascidos , Bile/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico , RNA Mensageiro/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA