Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nanoscale Horiz ; 9(7): 1211-1218, 2024 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-38775782

RESUMO

A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays.


Assuntos
Celulose , Ouro , Nanopartículas Metálicas , Radiossensibilizantes , Neoplasias de Mama Triplo Negativas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Radiossensibilizantes/química , Ouro/química , Celulose/química , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Nanopartículas Metálicas/efeitos da radiação , Linhagem Celular Tumoral , Feminino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos
2.
ACS Med Chem Lett ; 14(10): 1472-1477, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37849561

RESUMO

The conjugation of tetraphenylethylene (TPE) with podophyllotoxin, N-desacetylthiocolchicine, and cabazitaxel through a sebacic acid linker led to the formation of fluorescent nanoparticles. Dynamic light scattering (DLS) and photoluminescence spectroscopy were used for the identification and characterization of the fluorescent nanoparticles. The biological evaluation was determined in three human ovarian (KURAMOCHI, OVCAR3, OVSAHO) and three human breast (MCF7, SKBR 3, and MDA-MB231) cancer cell lines. In the case of cabazitaxel, the nanoparticles maintained the activity of the parent drug, at the low nanomolar range, while exhibiting high blue fluorescence. The internalization of the fluorescent NPs into cells was detected using immunofluorescence assay.

3.
Pharmaceuticals (Basel) ; 16(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37242505

RESUMO

A potent nontoxic antitumor drug, 2-hydroxyoleic acid (6, 2OHOA) used for membrane lipid therapy, was selected as a self-assembly inducer due to its ability to form nanoparticles (NPs) in water. For this purpose, it was conjugated with a series of anticancer drugs through a disulfide-containing linker to enhance cell penetration and to secure drug release inside the cell. The antiproliferative evaluation of the synthesized NP formulations against three human tumor cell lines (biphasic mesothelioma MSTO-211H, colorectal adenocarcinoma HT-29, and glioblastoma LN-229) showed that nanoassemblies 16-22a,bNPs exhibit antiproliferative activity at micromolar and submicromolar concentrations. Furthermore, the ability of the disulfide-containing linker to promote cellular effects was confirmed for most nanoformulations. Finally, 17bNP induced intracellular ROS increase in glioblastoma LN-229 cells similarly to free drug 8, and such elevated production was decreased by pretreatment with the antioxidant N-acetylcysteine. Also, nanoformulations 18bNP and 21bNP confirmed the mechanism of action of the free drugs.

4.
Pharmaceutics ; 14(4)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456696

RESUMO

The disaccharide trehalose is a well-established autophagy inducer, but its therapeutic application is severely hampered by its low potency and poor pharmacokinetic profile. Thus, we targeted the rational design and synthesis of trehalose-based small molecules and nano objects to overcome such issues. Among several rationally designed trehalose-centered putative autophagy inducers, we coupled trehalose via suitable spacers with known self-assembly inducer squalene to yield two nanolipid-trehalose conjugates. Squalene is known for its propensity, once linked to a bioactive compound, to assemble in aqueous media in controlled conditions, internalizing its payload and forming nanoassemblies with better pharmacokinetics. We assembled squalene conjugates to produce the corresponding nanoassemblies, characterized by a hydrodynamic diameter of 188 and 184 nm and a high stability in aqueous media as demonstrated by the measured Z-potential. Moreover, the nanoassemblies were characterized for their toxicity and capability to induce autophagy in vitro.

5.
Molecules ; 28(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615306

RESUMO

Cannabidiol (CBD) is a biologically active compound present in the plants of the Cannabis family, used as anticonvulsant, anti-inflammatory, anti-anxiety, and more recently, anticancer drug. In this work, its use as a new self-assembly inducer in the formation of nanoparticles is validated. The target conjugates are characterized by the presence of different anticancer drugs (namely N-desacetyl thiocolchicine, podophyllotoxin, and paclitaxel) connected to CBD through a linker able to improve drug release. These nanoparticles are formed via solvent displacement method, resulting in monodisperse and stable structures having hydrodynamic diameters ranging from 160 to 400 nm. Their biological activity is evaluated on three human tumor cell lines (MSTO-211H, HT-29, and HepG2), obtaining GI50 values in the low micromolar range. Further biological assays were carried out on MSTO-211H cells for the most effective NP 8B, confirming the involvement of paclitaxel in cytotoxicity and cell death mechanism.


Assuntos
Antineoplásicos , Canabidiol , Nanopartículas , Humanos , Canabidiol/farmacologia , Antineoplásicos/farmacologia , Paclitaxel/farmacologia , Paclitaxel/química , Linhagem Celular Tumoral
6.
FEBS J ; 289(14): 4251-4303, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934527

RESUMO

Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.


Assuntos
COVID-19 , Neoplasias , Vacinas , COVID-19/prevenção & controle , Glicoconjugados/uso terapêutico , Humanos , Neoplasias/prevenção & controle , Polissacarídeos/uso terapêutico , SARS-CoV-2
7.
PLoS One ; 16(11): e0258738, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34735480

RESUMO

BACKGROUND: Epidemics of COVID-19 in student populations at universities were a key concern for the 2020-2021 school year. The University of California (UC) System developed a set of recommendations to reduce campus infection rates. SARS-CoV-2 test results are summarized for the ten UC campuses during the Fall 2020 term. METHODS: UC mitigation efforts included protocols for the arrival of students living on-campus students, non-pharmaceutical interventions, daily symptom monitoring, symptomatic testing, asymptomatic surveillance testing, isolation and quarantine protocols, student ambassador programs for health education, campus health and safety pledges, and lowered density of on-campus student housing. We used data from UC campuses, the UC Health-California Department of Public Health Data Modeling Consortium, and the U.S. Census to estimate the proportion of each campus' student populations that tested positive for SARS-CoV-2 and compared it to the fraction individuals aged 20-29 years who tested positive in their respective counties. RESULTS: SARS-CoV-2 cases in campus populations were generally low in September and October 2020, but increased in November and especially December, and were highest in early to mid-January 2021, mirroring case trajectories in their respective counties. Many students were infected during the Thanksgiving and winter holiday recesses and were detected as cases upon returning to campus. The proportion of students who tested positive for SARS-CoV-2 during Fall 2020 ranged from 1.2% to 5.2% for students living on campus and was similar to students living off campus. For most UC campuses the proportion of students testing positive was lower than that for the 20-29-year-old population in which campuses were located. CONCLUSIONS: The layered mitigation approach used on UC campuses, informed by public health science and augmented perhaps by a more compliant population, likely minimized campus transmission and outbreaks and limited transmission to surrounding communities. University policies that include these mitigation efforts in Fall 2020 along with SARS-CoV-2 vaccination, may alleviate some local concerns about college students returning to communities and facilitate resumption of normal campus operations and in-person instruction.


Assuntos
COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Universidades , Adulto , Teste para COVID-19 , Vacinas contra COVID-19 , California/epidemiologia , Controle de Doenças Transmissíveis , Surtos de Doenças , Escolaridade , Epidemias , Feminino , Geografia , Humanos , Masculino , Programas de Rastreamento , Quarentena , Estudantes , Adulto Jovem
8.
FEBS J ; 288(16): 4746-4772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33752265

RESUMO

Glycan structures are common posttranslational modifications of proteins, which serve multiple important structural roles (for instance in protein folding), but also are crucial participants in cell-cell communications and in the regulation of immune responses. Through the interaction with glycan-binding receptors, glycans are able to affect the activation status of antigen-presenting cells, leading either to induction of pro-inflammatory responses or to suppression of immunity and instigation of immune tolerance. This unique feature of glycans has attracted the interest and spurred collaborations of glyco-chemists and glyco-immunologists to develop glycan-based tools as potential therapeutic approaches in the fight against diseases such as cancer and autoimmune conditions. In this review, we highlight emerging advances in this field, and in particular, we discuss on how glycan-modified conjugates or glycoengineered cells can be employed as targeting devices to direct tumor antigens to lectin receptors on antigen-presenting cells, like dendritic cells. In addition, we address how glycan-based nanoparticles can act as delivery platforms to enhance immune responses. Finally, we discuss some of the latest developments in glycan-based therapies, including chimeric antigen receptor (CAR)-T cells to achieve targeting of tumor-associated glycan-specific epitopes, as well as the use of glycan moieties to suppress ongoing immune responses, especially in the context of autoimmunity.


Assuntos
Autoimunidade/imunologia , Polissacarídeos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , Comunicação Celular/imunologia , Humanos , Nanopartículas/química , Polissacarídeos/química , Processamento de Proteína Pós-Traducional
9.
JAMA Netw Open ; 4(2): e2037129, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570576

RESUMO

Importance: The reopening of colleges and universities in the US during the coronavirus disease 2019 (COVID-19) pandemic is a significant public health challenge. The development of accessible and practical approaches for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in the college population is paramount for deploying recurrent surveillance testing as an essential strategy for virus detection, containment, and mitigation. Objective: To determine the prevalence of SARS-CoV-2 in asymptomatic participants in a university community by using CREST (Cas13-based, rugged, equitable, scalable testing), a CRISPR-based test developed for accessible and large-scale viral screening. Design, Setting, and Participants: For this cohort study, a total of 1808 asymptomatic participants were screened for SARS-CoV-2 using a CRISPR-based assay and a point-of-reference reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) test. Viral prevalence in self-collected oropharyngeal swab samples collected from May 28 to June 11, 2020, and from June 23 to July 2, 2020, was evaluated. Exposures: Testing for SARS-CoV-2. Main Outcomes and Measures: SARS-CoV-2 status, viral load, and demographic information of the study participants were collected. Results: Among the 1808 participants (mean [SD] age, 27.3 [11.0] years; 955 [52.8%] female), 732 underwent testing from May to early June (mean [SD] age, 28.4 [11.7] years; 392 [53.6%] female). All test results in this cohort were negative. In contrast, 1076 participants underwent testing from late June to early July (mean [SD] age, 26.6 [10.5] years; 563 [52.3%] female), with 9 positive results by RT-qPCR. Eight of these positive samples were detected by the CRISPR-based assay and confirmed by Clinical Laboratory Improvement Amendments-certified diagnostic testing. The mean (SD) age of the positive cases was 21.7 (3.3) years; all 8 individuals self-identified as students. These metrics showed that a CRISPR-based assay was effective at capturing positive SARS-CoV-2 cases in this student population. Notably, the viral loads detected in these asymptomatic cases resemble those seen in clinical samples, highlighting the potential of covert viral transmission. The shift in viral prevalence coincided with the relaxation of stay-at-home measures. Conclusions and Relevance: These findings reveal a shift in SARS-CoV-2 prevalence in a young and asymptomatic population and uncover the leading edge of a local outbreak that coincided with rising case counts in the surrounding county and the state of California. The concordance between CRISPR-based and RT-qPCR testing suggests that CRISPR-based assays are reliable and offer alternative options for surveillance testing and detection of SARS-CoV-2 outbreaks, as is required to resume operations in higher-education institutions in the US and abroad.


Assuntos
COVID-19/diagnóstico , Técnicas de Laboratório Clínico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Programas de Rastreamento/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Universidades , Adolescente , Adulto , COVID-19/virologia , Estudos de Coortes , Surtos de Doenças , Feminino , Humanos , Masculino , Pandemias , DNA Polimerase Dirigida por RNA , Estudantes , Carga Viral , Adulto Jovem
10.
ACS Med Chem Lett ; 11(5): 895-898, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32435402

RESUMO

Betulinic acid is validated as a new self-assembly inducer for the formation of nanoparticles (NPs) in combination with different drugs. The target compounds are characterized by the presence of anticancer drugs acting on tubulin dynamics and of a linker that could be a carbon chain or a triazole-based one. Nanoparticles formed are characterized and their biological activity is evaluated.

11.
Pediatr Radiol ; 50(7): 1010-1012, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31980849

RESUMO

Congenital prepubic sinus is a very rare urogenital anomaly that manifests as a tubular structure of varying histological findings that drains to the skin overlying the pubic symphysis. This tract has been observed to course above, below or, in only a handful of cases, directly through the pubis. We report a case of congenital prepubic sinus with this unusual transpubic course in an 18-year-old man. The patient was initially taken to the operating room for excision of a presumed inclusion cyst. At the time of surgery, the collection was found to track proximally and was excised down to the level of the pubic symphysis. Subsequent magnetic resonance (MR) imaging established the diagnosis of congenital prepubic sinus. We describe the different anatomical courses of congenital prepubic sinus, hypotheses of its pathogenesis, and the use of MR imaging in both diagnosis and surgical planning.


Assuntos
Fístula Cutânea/diagnóstico por imagem , Imageamento por Ressonância Magnética , Sínfise Pubiana/anormalidades , Anormalidades Urogenitais/diagnóstico por imagem , Adolescente , Fístula Cutânea/cirurgia , Humanos , Masculino , Anormalidades Urogenitais/cirurgia
12.
Drug Discov Today Technol ; 38: 57-67, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34895641

RESUMO

Since their discovery, therapeutic or prophylactic vaccines represent a promising option to prevent or cure infections and other pathologies, such as cancer or autoimmune disorders. More recently, among a number of nanomaterials, gold nanoparticles (AuNPs) have emerged as novel tools for vaccine developments, thanks to their inherent ability to tune and upregulate immune response. Moreover, owing to their features, AuNPs can exert optimal actions both as delivery systems and as adjuvants. Notwithstanding the potential huge impact in vaccinology, some challenges remain before AuNPs in vaccine formulations can be translated into the clinic. The current review provides an updated overview of the most recent and effective application of gold nanoparticles as efficient means to develop a new generation of vaccine.


Assuntos
Nanopartículas Metálicas , Vacinas , Adjuvantes Imunológicos , Ouro , Desenvolvimento de Vacinas
13.
J Nanobiotechnology ; 17(1): 49, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30943991

RESUMO

BACKGROUND: The increasing use of gold nanoparticles (AuNPs) in the field of neuroscience instilled hope for their rapid translation to the clinical practice. AuNPs can be engineered to carry therapeutics or diagnostics in the diseased brain, possibly providing greater cell specificity and low toxicity. Although there is a general enthusiasm for these tools, we are in early stages of their development. Overall, their brain penetrance, stability and cell specificity are critical issues that must be addressed to drive AuNPs to the clinic. RESULTS: We studied the kinetic, distribution and stability of PEG-coated AuNPs in mice receiving a single injection into the cisterna magna of the 4th ventricle. AuNPs were conjugated with the fluorescent tag Cy5.5 (Cy5.5-AuNPs) to track their in vivo distribution. Fluorescence levels from such particles were detected in mice for weeks. In situ analysis of brains by immunofluorescence and electron microscopy revealed that Cy5.5-AuNPs penetrated the brain parenchyma, spreading in the CNS parenchyma beneath the 4th ventricle. Cy5.5-AuNPs were preferentially found in neurons, although a subset of resting microglia also entrapped these particles. CONCLUSIONS: Our results suggest that the ICM route for delivering gold particles allows the targeting of neurons. This approach might be pursued to carry therapeutics or diagnostics inside a diseased brain with a surgical procedure that is largely used in gene therapy approaches. Furthermore, this approach could be used for radiotherapy, enhancing the agent's efficacy to kill brain cancer cells.


Assuntos
Encéfalo/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Polietilenoglicóis/química , Animais , Carbocianinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisterna Magna , Estabilidade de Medicamentos , Corantes Fluorescentes/química , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Permeabilidade , Distribuição Tecidual
14.
ACS Med Chem Lett ; 10(4): 611-614, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996805

RESUMO

The design and the synthesis of new self-assembling conjugates is reported. The target compounds are characterized by the presence of a self-immolative linker that secures a controlled release induced by lipase cleavage. 4-(1,2-Diphenylbut-1-en-1-yl)aniline is used as a self-assembling inducer and amino-thiocolchicine as prototype of drug. The release of thiocolchicine derivative has been demonstrated in vitro in the presence of porcine pancreatic lipase and Celite-supported lipase. The formation of nanoparticles is confirmed by dynamic light scattering, atomic force microscopy, and fluorescence microscopy. The antiproliferative activity has been proved on two human cancer cell lines.

15.
Angew Chem Int Ed Engl ; 51(2): 496-9, 2012 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-22121095

RESUMO

Particularly suitable: An N-terminal serine mutant of anti-HER2 scFv antibody was conjugated to polymer-coated magnetofluorescent nanoparticles by strain-promoted alkyne-nitrone cycloaddition. The resulting nanoparticles (see scheme) proved effective in targeting and labeling HER2-positive breast cancer cells.


Assuntos
Nanopartículas/química , Óxidos de Nitrogênio/química , Receptor ErbB-2/análise , Receptor ErbB-2/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Alcinos/química , Linhagem Celular Tumoral , Ciclização , Humanos , Mutação , Anticorpos de Cadeia Única/genética
16.
Pharmacol Res ; 62(2): 150-65, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20117211

RESUMO

At present, mammary carcinoma is the second most common type of malignant tumor in adult women after lung cancer, as more than one million women are diagnosed with breast cancer every year. Despite advances in diagnosis and treatment, which have resulted in a decrease in mortality in recent decades, breast cancer remains a major public health problem. One of the most significant unresolved clinical and scientific problems is the occurrence of resistance to clinical treatments and their toxicity (and how to predict, prevent and overcome them). However, the heterogeneity of human breast cancer in terms of genetic features, molecular profiles and clinical behavior represents a constraint obstructing the discovery of a solution to the disease. It is currently considered that the chances of success of therapy may increase if the tumor cells are selectively removed before they can evolve to their mature stages up to metastases production. Therefore, novel and more sensitive diagnostic tools are being developed, with the aim of improving the early and noninvasive detection of rising malignancies and the accuracy of tumor tissue localization. Meanwhile, there is an emerging use of targeted therapies in oncology, depending on the expression of specific proteins or genes present in tumor cells. Among the molecular targets considered for the treatment of breast cancer cells so far, we chose to focus on examples involving overexpression and/or gene amplification of "Human Epidermal growth factor Receptor 2" (HER2) protein. In current studies, various types of nanoparticles conjugated with the anti-HER2 monoclonal antibody, the so-called "trastuzumab", are investigated extensively due to promising results in biological and preclinical applications aimed at improving the treatment of breast cancer. In this paper, we present a critical review of the preparation and use of different kinds of trastuzumab-functionalized nanoparticles, with an emphasis on the therapeutic and diagnostic (theranostic) potential of this generation of hybrid nanoparticles, exploiting the multifaceted mechanisms of action of trastuzumab against malignant cells.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Nanomedicina/métodos , Receptor ErbB-2/metabolismo , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Feminino , Humanos , Nanomedicina/tendências , Nanopartículas/química , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab
17.
J Am Chem Soc ; 130(38): 12712-24, 2008 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-18761445

RESUMO

A major challenge in magnetic nanoparticle synthesis and (bio)functionalization concerns the precise characterization of the nanoparticle surface ligands. We report the first analytical NMR investigation of organic ligands stably anchored on the surface of superparamagnetic nanoparticles (MNPs) through the development of a new experimental application of high-resolution magic-angle spinning (HRMAS). The conceptual advance here is that the HRMAS technique, already being used for MAS NMR analysis of gels and semisolid matrixes, enables the fine-structure-resolved characterization of even complex organic molecules bound to paramagnetic nanocrystals, such as nanosized iron oxides, by strongly decreasing the effects of paramagnetic disturbances. This method led to detail-rich, well-resolved (1)H NMR spectra, often with highly structured first-order couplings, essential in the interpretation of the data. This HRMAS application was first evaluated and optimized using simple ligands widely used as surfactants in MNP synthesis and conjugation. Next, the methodology was assessed through the structure determination of complex molecular architectures, such as those involved in MNP3 and MNP4. The comparison with conventional probes evidences that HRMAS makes it possible to work with considerably higher concentrations, thus avoiding the loss of structural information. Consistent 2D homonuclear (1)H- (1)H and (1)H- (13)C heteronuclear single-quantum coherence correlation spectra were also obtained, providing reliable elements on proton signal assignments and carbon characterization and opening the way to (13)C NMR determination. Notably, combining the experimental evidence from HRMAS (1)H NMR and diffusion-ordered spectroscopy performed on the hybrid nanoparticle dispersion confirmed that the ligands were tightly bound to the particle surface when they were dispersed in a ligand-free solvent, while they rapidly exchanged when an excess of free ligand was present in solution. In addition to HRMAS NMR, matrix-assisted laser desorption ionization time-of-flight MS analysis of modified MNPs proved very valuable in ligand mass identification, thus giving a sound support to NMR characterization achievements.


Assuntos
Óxido Ferroso-Férrico/química , Espectroscopia de Ressonância Magnética/métodos , Nanopartículas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alcinos/química , Caproatos/química , Ligantes , Magnetismo , Ácido Oleico/química
18.
Chemistry ; 12(34): 8664-86, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17066397

RESUMO

Heparin is a highly sulfated, linear polymer that participates in a plethora of biological processes by interaction with many proteins. The chemical complexity and heterogeneity of this polysaccharide can explain the fact that, despite its widespread medical use as an anticoagulant drug, the structure-function relationship of defined heparin sequences is still poorly understood. Here, we present the chemical synthesis of a library containing heparin oligosaccharides ranging from di- to hexamers of different sequences and sulfation patterns. An amine-terminated linker was placed at the reducing end of the synthetic structures to allow for immobilization onto N-hydroxysuccinimide activated glass slides and creation of heparin microarrays. Key features of this modular synthesis, such as the influence of the amine linker on the glycosidation efficiency, the use of 2-azidoglucose as glycosylating agents for oligosaccharide assembly, and the compatibility of the protecting group strategy with the sulfation-deprotection steps, are discussed. Heparin microarrays containing this oligosaccharide library were constructed using a robotic printer and employed to characterize the carbohydrate binding affinities of three heparin-binding growth factors. FGF-1, FGF-2 and FGF-4 that are implicated in angiogenesis, cell growth and differentiation were studied. These heparin chips aided in the discovery of novel, sulfated sequences that bind FGF, and in the determination of the structural requirements needed for recognition by using picomoles of protein on a single slide. The results presented here highlight the potential of combining oligosaccharide synthesis and carbohydrate microarray technology to establish a structure-activity relationship in biological processes.


Assuntos
Heparina/síntese química , Análise em Microsséries , Oligossacarídeos/síntese química , Proteínas/química , Moduladores da Angiogênese/química , Moduladores da Angiogênese/metabolismo , Anticoagulantes/farmacologia , Sítios de Ligação , Sequência de Carboidratos , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator 4 de Crescimento de Fibroblastos/metabolismo , Glicosilação , Heparitina Sulfato/química , Dados de Sequência Molecular , Relação Estrutura-Atividade , Succinimidas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA