Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 116(4): 906-915, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201759

RESUMO

PURPOSE: The aim of this work was to determine whether intratumoral injections of a liquid oxygen solution are effective at boosting radiation-induced abscopal effects. METHODS AND MATERIALS: A liquid oxygen solution, comprising slow-release polymer-shelled oxygen microparticles, was fabricated and injected intratumorally to locally elevate tumor oxygen levels before and after treatment with radiation therapy. Changes in tumor volume were monitored. In a subset of studies, CD8-positive cells were depleted and the experiments were repeated. Histologic analyses of the tumor tissues were performed to quantify the concentration of infiltrating immune cells. RESULTS: Daily intratumoral injections of oxygen-filled microparticles significantly retarded primary and secondary tumor growth, boosted infiltration of cytotoxic T cells, and improved overall survival when used as an adjuvant to radiation therapy. The findings also demonstrated that efficacy requires both radiation and oxygen, suggesting that they act synergistically to enhance in situ vaccination and systemic antitumor immune responses. CONCLUSIONS: This study demonstrated the potential advantages of intratumoral injections of a liquid oxygen solution as a strategy to boost radiation-induced abscopal effects, and the findings warrant future efforts toward clinical translation of the injectable liquid oxygen solution.


Assuntos
Neoplasias , Oxigênio , Humanos , Neoplasias/patologia , Linfócitos T CD8-Positivos , Vacinação , Imunidade
2.
IEEE Trans Biomed Eng ; 70(4): 1380-1388, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36282828

RESUMO

Hypoxia and hypoxemia are the conditions when oxygen is depleted from the cell due to, for example, respiratory failure, cancer, etc. While the current therapy brought reasonable clinical outcomes, its systematic nature of oxygen delivery can be compromised by a significant dropout and side effects. This paper presents a totally implantable oxygen generator (TIOG) for localized, highly controllable, real-time, and targeted oxygen delivery. METHODS: The TIOG system, an ultra-low power implantable wireless platform, is built using off-the-shelf components. The TIOG can be remotely operated to enable a tailored oxygen delivery based on electrolysis with a precisely controlled electrical signal (i.e., current level, frequency, and duty cycle). RESULTS: The in vitro experiments demonstrate that the TIOG could deliver oxygen with a rate of 9.27 ± 1.9 µmol/L/min with the pulsed electrical current (800 µA, 600 µs pulse or 6% duty cycle with 10 ms period). The system could also suppress chlorine generation under the safety guideline (5 mg/L). Operating at 433 MHz ISM band, the TIOG could be wirelessly controlled from up to 600 cm distance with a 0%-bit error rate (BER) and 0%-packet error rate (PER). A single charge of the battery could operate the system for up to 3.3 hr, which can be wirelessly recharged for long-term operation. CONCLUSION: The longevity of the TIOG system enables ambulatory oxygen therapy in a much longer-term than current practice.


Assuntos
Hipóxia , Oxigênio , Humanos , Hipóxia/terapia , Próteses e Implantes , Eletricidade , Tecnologia sem Fio
3.
Nature ; 608(7924): 712-718, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36002487

RESUMO

Liquids with permanent microporosity can absorb larger quantities of gas molecules than conventional solvents1, providing new opportunities for liquid-phase gas storage, transport and reactivity. Current approaches to designing porous liquids rely on sterically bulky solvent molecules or surface ligands and, thus, are not amenable to many important solvents, including water2-4. Here we report a generalizable thermodynamic strategy to preserve permanent microporosity and impart high gas solubilities to liquid water. Specifically, we show how the external and internal surface chemistry of microporous zeolite and metal-organic framework (MOF) nanocrystals can be tailored to promote the formation of stable dispersions in water while maintaining dry networks of micropores that are accessible to gas molecules. As a result of their permanent microporosity, these aqueous fluids can concentrate gases, including oxygen (O2) and carbon dioxide (CO2), to much higher densities than are found in typical aqueous environments. When these fluids are oxygenated, record-high capacities of O2 can be delivered to hypoxic red blood cells, highlighting one potential application of this new class of microporous liquids for physiological gas transport.

4.
Proc Natl Acad Sci U S A ; 119(13): e2115276119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312360

RESUMO

SignificanceThe treatment of hypoxemia that is refractory to the current standard of care is time-sensitive and requires skilled caregivers and use of specialized equipment (e.g., extracorporeal membrane oxygenation). Most patients experiencing refractory hypoxemia will suffer organ dysfunction, and death is common in this cohort. Here, we describe a new strategy to stabilize and support patients using a microfluidic device that administers oxygen gas directly to the bloodstream in real time and on demand using a process that we call sequential shear-induced bubble breakup. If successful, the described technology may help to avoid or decrease the incidence of ventilator-related lung injury from refractory hypoxemia.


Assuntos
Oxigenação por Membrana Extracorpórea , Lesão Pulmonar , Oxigenação por Membrana Extracorpórea/efeitos adversos , Humanos , Hipóxia , Dispositivos Lab-On-A-Chip , Oxigênio , Ventiladores Mecânicos/efeitos adversos
5.
J Control Release ; 327: 420-428, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32798637

RESUMO

Over the past decade, there have been many attempts to engineer systems capable of delivering oxygen to overcome the effects of both systemic and local hypoxia that occurs as a result of traumatic injury, cell transplantation, or tumor growth, among many others. Despite progress in this field, which has led to a new class of oxygen-generating biomaterials, most reported techniques lack the tunability necessary for independent control over the oxygen flux (volume per unit time) and the duration of delivery, both of which are key parameters for overcoming tissue hypoxia of varying etiologies. Here, we show that these critical parameters can be effectively manipulated using hyperbarically-loaded polymeric microcapsules (PMC). PMCs are micron-sized particles with hollow cores and polymeric shells. We show that oxygen delivery through PMCs is dependent on its permeability through the polymeric shell, the shell thickness, and the pressure gradient across the shell. We also demonstrate that incorporating an intermediate oil layer between the polymeric shell and the gas core prevents rapid outgassing by effectively lowering the resultant pressure gradient across the polymeric membrane following depressurization.


Assuntos
Materiais Biocompatíveis , Polímeros , Cápsulas , Oxigênio
6.
Med Gas Res ; 9(3): 133-138, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552876

RESUMO

The purpose of this work was to determine the safety of inhaled hydrogen gas in healthy animals. Female mice were exposed to medical air with or without hydrogen gas (concentration 2.4%) for 72 hours (n = 25 mice/group). Mice underwent a standardized and validated neurobehavioral examination, SmithKline Beecham, Harwell, Imperial College, Royal London Hospital, Phenotype Assessment (SHIRPA) protocol, prior to and following the exposure period. Blood was withdrawn for serologic evaluation and all major organ tissues were evaluated histologically. The average hydrogen concentration within the chamber was 2.27%. Following exposure, there was no significant change in body weight in either group. Similarly, there was no significant change in the total SHIRPA score, although hydrogen-treated mice exhibited significantly lower spontaneous locomotor activity (P < 0.0001) in a subset of the test; all other aspects of the mouse neurologic exam were normal in hydrogen-treated animals. Brain histopathology was also normal in all mice, as was the histology of all other major organs. There were no significant differences in complete blood count, serum chemistry, or arterial blood gases between control and hydrogen-treated mice (P > 0.05 for all). Hydrogen gas did not appear to cause significant adverse effects when administered to healthy mice for 72 hours, with the possible exception of decreased spontaneous locomotor activity. The study was approved by the Institutional Animal Care and Use Committee at Boston Children's Hospital, USA (approved number 18-01-3536) on January 25, 2018.


Assuntos
Hidrogênio/administração & dosagem , Hidrogênio/efeitos adversos , Segurança , Administração por Inalação , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos , Fenótipo , Testes Sorológicos
7.
JACC Basic Transl Sci ; 4(2): 176-187, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31061920

RESUMO

This study used a swine model of mildly hypothermic prolonged circulatory arrest and found that the addition of 2.4% inhaled hydrogen gas to inspiratory gases during and after the ischemic insult significantly decreased neurologic and renal injury compared with controls. With proper precautions, inhalational hydrogen may be administered safely through conventional ventilators and may represent a complementary therapy that can be easily incorporated into current workflows. In the future, inhaled hydrogen may diminish the sequelae of ischemia that occurs in congenital heart surgery, cardiac arrest, extracorporeal life-support events, acute myocardial infarction, stroke, and organ transplantation.

8.
ACS Appl Mater Interfaces ; 11(1): 7-12, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30444111

RESUMO

The ability to tailor acoustic cavitation of contrast agents is pivotal for ultrasound applications in enhanced imaging, drug delivery, and cancer therapy, etc. A biopolymer-based system of microbubbles and nanobubbles was developed as acoustic reporters that consist of extremely porous hard shells. Despite the existence of an incompressible shell, these porous contrast agents exhibited strong nonlinear acoustic response under very low acoustic pressure, e.g, harmonics, characteristic of free gas bubbles. The large air/water surface area within the transmural capillaries are believed to facilitate oscillation of the inner gas core. Furthermore, the acoustic cavitation can be tailored by variation in polymer structures. This synthetically based platform offers insight for the rational design of advanced acoustic biomaterials.

9.
Chemistry ; 24(71): 18820-18829, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-29952026

RESUMO

Intravascular oxygen delivery holds great potential to treat numerous hypoxic conditions and emergencies, including pulmonary disorders, hypoxic tumors, hemorrhagic shock, stroke, cardiac arrest and so on. Tremendous effort has been made in the past to find material solutions for the development of intravenous oxygen carriers and have ranged from blood substitutes to microbubbles with limited success. This paper highlights previous and recent progress in perfluorocarbon-emulsions and microbubbles as intravenous gas carriers, including concerns over their long-term stability, in vivo safety profiles, and oxygen transport efficacy. Their use as potential resuscitative therapeutics for treating various types of cardiac arrest is also discussed.

10.
Sci Transl Med ; 9(408)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931652

RESUMO

Assessing the adequacy of oxygen delivery to tissues is vital, particularly in the fields of intensive care medicine and surgery. As oxygen delivery to a cell becomes deficient, changes in mitochondrial redox state precede changes in cellular function. We describe a technique for the continuous monitoring of the mitochondrial redox state on the epicardial surface using resonance Raman spectroscopy. We quantify the reduced fraction of specific electron transport chain cytochromes, a metric we name the resonance Raman reduced mitochondrial ratio (3RMR). As oxygen deficiency worsens, heme moieties within the electron transport chain become progressively more reduced, leading to an increase in 3RMR. Myocardial 3RMR increased from baseline values of 18.1 ± 5.9 to 44.0 ± 16.9% (P = 0.0039) after inferior vena cava occlusion in rodents (n = 8). To demonstrate the diagnostic power of this measurement, 3RMR was continuously measured in rodents (n = 31) ventilated with 5 to 8% inspired oxygen for 30 min. A 3RMR value exceeding 40% at 10 min predicted subsequent cardiac arrest with 95% sensitivity and 100% specificity [area under the curve (AUC), 0.98], outperforming all current measures, including contractility (AUC, 0.51) and ejection fraction (AUC, 0.39). 3RMR correlated with indices of intracellular redox state and energy production. This technique may permit the real-time identification of critical defects in organ-specific oxygen delivery.


Assuntos
Parada Cardíaca/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Animais , Aorta/patologia , Hemodinâmica , Hemoglobinas/química , Hemoglobinas/metabolismo , Hipóxia/complicações , Hipóxia/patologia , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Mioglobina/química , Mioglobina/metabolismo , Oxirredução , Oxigênio/metabolismo , Ratos Sprague-Dawley , Análise Espectral Raman , Sus scrofa
11.
Pharm Res ; 34(10): 2156-2162, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28685297

RESUMO

PURPOSE: Low oxygen levels, or hypoxemia, is a common cause of morbidity and mortality in critically ill patients. Hypoxemia is typically addressed by increasing the fraction of inspired oxygen, the use of mechanical ventilation, or more invasive measures. Recently, the injection of oxygen gas directly into the bloodstream by packaging it within lipid-based oxygen microbubbles (LOMs) has been explored. The purpose of this work is to examine the acute hemodynamic effects of intravenous injections of LOMs. METHODS: LOMs composed of 1,2-distearoyl-sn-glycero-3-phosphocoline and cholesterol were manufactured using a process of shear homogenization under an oxygen headspace. A 5 mL aliquot of either PlasmaLyte A, or low (37%) or high (55%) concentration LOMs (n = 10 per group) was injected over a 1 min period into Sprague Dawley rats instrumented for measurement of cardiac index and pulmonary (PVR) and systemic (SVR) vascular resistance during a 60 min observation period. Hemodynamics were compared between groups by linear mixed modeling. RESULTS: Approximately 1011 LOMs with mean diameter 3.77 ± 1.19 µm were injected over the 1 min period. Relative to controls, rodents treated with high concentration LOMs exhibited a higher pulmonary artery pressure (20 ± 0.4 mmHg vs 18 ± 0.4 mmHg, P < 0.001) and higher PVR (0.31 ± 0.01 vs 0.23 ± 0.01 mmHg/mL*min*kg, P < 0.001. Despite a stable cardiac index (62.2 ± 3.5 vs 62.3 ± 3.4 mL/min*kg, P < 0.001), mean arterial blood pressure decreased significantly in LOM-treated animals (46 ± 2 vs 60 ± 2 mmHg, P < 0.001) due to a decrease in SVR. Injections with aged LOM emulsions (>48 h since manufacture) resulted in a higher incidence of hemodynamic collapse during the observation period (P = 0.02). CONCLUSIONS: LOMs may be injected in quantities sufficient to deliver clinically meaningful volumes of oxygen but cause significant decrements in blood pressure and elevations in PVR.


Assuntos
Colesterol/química , Hemodinâmica , Oxigênio/química , Fosfatidilcolinas/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Humanos , Hipóxia/fisiopatologia , Hipóxia/terapia , Injeções Intravenosas , Masculino , Microbolhas , Oxigênio/metabolismo , Tamanho da Partícula , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley , Respiração Artificial , Propriedades de Superfície , Resistência Vascular
13.
PLoS One ; 11(5): e0155456, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27175488

RESUMO

BACKGROUND: We previously developed and validated a strategy for stimulating heart regeneration by administration of recombinant neuregulin (rNRG1), a growth factor, in mice. rNRG1 stimulated proliferation of heart muscle cells, cardiomyocytes, and was most effective when administration began during the neonatal period. Our results suggested the use of rNRG1 to treat pediatric patients with heart failure. However, administration in this age group may stimulate growth outside of the heart. METHODS: NRG1 and ErbB receptor expression was determined by RT-PCR. rNRG1 concentrations in serum were quantified by ELISA. Mice that received protocols of recombinant neuregulin1-ß1 administration (rNRG1, 100 ng/g body weight, daily subcutaneous injection for the first month of life), previously shown to induce cardiac regeneration, were examined at pre-determined intervals. Somatic growth was quantified by weighing. Organ growth was quantified by MRI and by weighing. Neoplastic growth was examined by MRI, visual inspection, and histopathological analyses. Phospho-ERK1/2 and S6 kinase were analyzed with Western blot and ELISA, respectively. RESULTS: Lung, spleen, liver, kidney, brain, and breast gland exhibited variable expression of the NRG1 receptors ErbB2, ErbB3, ErbB4, and NRG1. Body weight and tibia length were not altered in mice receiving rNRG1. MRI showed that administration of rNRG1 did not alter the volume of the lungs, liver, kidneys, brain, or spinal cord. Administration of rNRG1 did not alter the weight of the lungs, spleen, liver, kidneys, or brain. MRI, visual inspection, and histopathological analyses showed no neoplastic growth. Follow-up for 6 months showed no alteration of somatic or organ growth. rNRG1 treatment increased the levels of phospho-ERK1/2, but not phospho-S6 kinase. CONCLUSIONS: Administration protocols of rNRG1 for stimulating cardiac regeneration in mice during the first month of life did not induce unwanted growth effects. Further studies may be required to determine whether this is the case in a corresponding human population.


Assuntos
Envelhecimento/fisiologia , Coração/fisiologia , Morfogênese/efeitos dos fármacos , Neoplasias/patologia , Neuregulina-1/administração & dosagem , Neuregulina-1/farmacologia , Regeneração/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Receptores ErbB/genética , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Humanos , Rim/efeitos dos fármacos , Rim/enzimologia , Camundongos , Neuregulina-1/sangue , Neuregulina-1/genética , Tamanho do Órgão/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Proteínas Quinases S6 Ribossômicas/metabolismo
14.
Nat Protoc ; 11(3): 542-52, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26890681

RESUMO

The introduction of injury models for neonatal mouse hearts has accelerated research on the mechanisms of cardiac regeneration in mammals. However, some existing models, such as apical resection and ligation of the left anterior descending artery, produce variable results, which may be due to technical difficulties associated with these methods. Here we present an alternative model for the study of cardiac regeneration in neonatal mice in which cryoinjury is used to induce heart injury. This model yields a reproducible injury size, does not induce known mechanisms of cardiac regeneration and leads to a sustained reduction of cardiac function. This protocol uses reusable cryoprobes that can be assembled in 5 min, with the entire procedure taking 15 min per pup. The subsequent heart collection and fixation takes 2 d to complete. Cryoinjury results in a myocardial scar, and the size of injury can be scaled by the use of different cryoprobes (0.5 and 1.5 mm). Cryoinjury models are medically relevant to diseases in human infants with heart disease. In summary, the myocardial cryoinjury model in neonatal mice described here is a useful tool for cardiac translational and regeneration research.


Assuntos
Traumatismos Cardíacos/patologia , Coração/fisiologia , Miocárdio/patologia , Regeneração , Animais , Animais Recém-Nascidos , Criocirurgia/efeitos adversos , Modelos Animais de Doenças , Congelamento/efeitos adversos , Traumatismos Cardíacos/etiologia , Humanos , Lactente , Camundongos , Camundongos Endogâmicos ICR , Medicina Regenerativa , Pesquisa Translacional Biomédica
15.
Sci Transl Med ; 7(281): 281ra45, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834111

RESUMO

Therapies developed for adult patients with heart failure have been shown to be ineffective in pediatric clinical trials, leading to the recognition that new pediatric-specific therapies for heart failure must be developed. Administration of the recombinant growth factor neuregulin-1 (rNRG1) stimulates regeneration of heart muscle cells (cardiomyocytes) in adult mice. Because proliferation-competent cardiomyocytes are more abundant in growing mammals, we hypothesized that administration of rNRG1 during the neonatal period might be more effective than in adulthood. If so, neonatal rNRG1 delivery could be a new therapeutic strategy for treating heart failure in pediatric patients. To evaluate the effectiveness of rNRG1 administration in cardiac regeneration, newborn mice were subjected to cryoinjury, which induced myocardial dysfunction and scar formation and decreased cardiomyocyte cell cycle activity. Early administration of rNRG1 to mice from birth to 34 days of age improved myocardial function and reduced the prevalence of transmural scars. In contrast, administration of rNRG1 from 4 to 34 days of age only transiently improved myocardial function. The mechanisms of early administration involved cardiomyocyte protection (38%) and proliferation (62%). We also assessed the ability of rNRG1 to stimulate cardiomyocyte proliferation in intact cultured myocardium from pediatric patients. rNRG1 induced cardiomyocyte proliferation in myocardium from infants with heart disease who were less than 6 months of age. Our results identify an effective time period within which to execute rNRG1 clinical trials in pediatric patients for the stimulation of cardiomyocyte regeneration.


Assuntos
Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neurregulinas/farmacologia , Regeneração/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Doenças Cardiovasculares/patologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Criança , Cicatriz/patologia , Temperatura Baixa , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Lactente , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Neurregulinas/administração & dosagem , Receptor ErbB-4/metabolismo
16.
Dis Model Mech ; 6(6): 1459-69, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23929941

RESUMO

Numerous mouse models have utilized Cre-loxP technology to modify gene expression. Adverse effects of Cre recombinase activity have been reported, including in the heart. However, the mechanisms associated with cardiac Cre toxicity are largely unknown. Here, we show that expression of Cre in cardiomyocytes induces a DNA damage response, resulting in cardiomyocyte apoptosis, cardiac fibrosis and cardiac dysfunction. In an effort to increase the recombination efficiency of a widely used tamoxifen-sensitive Cre transgene under control of the α-myosin-heavy-chain promoter (αMHC-MerCreMer), we observed myocardial dysfunction and decreased survival, which were dependent on the dose of tamoxifen injected. After excluding a Cre-independent contribution by tamoxifen, we found that Cre induced myocardial fibrosis, activation of pro-fibrotic genes and cardiomyocyte apoptosis. Examination of the molecular mechanisms showed activation of DNA damage response signaling and p53 stabilization in the absence of loxP sites, suggesting that Cre induced illegitimate DNA breaks. Cardiomyocyte apoptosis was also induced by expressing Cre using adenoviral transduction, indicating that the effect was not dependent on genomic integration of the transgene. Cre-mediated homologous recombination at loxP sites was dose-dependent and had a ceiling effect at ∼80% of cardiomyocytes showing recombination. By titrating the amount of tamoxifen to maximize recombination while minimizing animal lethality, we determined that 30 µg tamoxifen/g body weight/day injected on three consecutive days is the optimal condition for the αMHC-MerCreMer system to induce recombination in the Rosa26-lacZ strain. Our results further highlight the importance of experimental design, including the use of appropriate genetic controls for Cre expression.


Assuntos
Dano ao DNA/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Análise de Sobrevida , Tamoxifeno/farmacologia , Animais , Apoptose , Relação Dose-Resposta a Droga , Camundongos , Miócitos Cardíacos/patologia , Tamoxifeno/administração & dosagem , Tamoxifeno/efeitos adversos
17.
Adv Healthc Mater ; 2(8): 1131-41, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23471884

RESUMO

Self-assembling, concentrated, lipid-based oxygen microparticles (LOMs) have been developed to administer oxygen gas when injected intravenously, preventing organ injury and death from systemic hypoxemia in animal models. Distinct from blood substitutes, LOMs are a one-way oxygen carrier designed to rescue patients who experience life-threatening hypoxemia, as caused by airway obstruction or severe lung injury. Here, we describe methods to manufacture large quantities of LOMs using an in-line, recycling, high-shear homogenizer, which can create up to 4 liters of microparticle emulsion in 10 minutes, with particles containing a median diameter of 0.93 microns and 60 volume% of gas phase. Using this process, we screen 30 combinations of commonly used excipients for their ability to form stable LOMs. LOMs composed of DSPC and cholesterol in a 1:1 molar ratio are stable for a 100 day observation period, and the number of particles exceeding 10 microns in diameter does not increase over time. When mixed with blood in vitro, LOMs fully oxygenate blood within 3.95 seconds of contact, and do not cause hemolysis or complement activation. LOMs can be manufactured in bulk by high shear homogenization, and appear to have a stability and size profile which merit further testing.


Assuntos
Gases/química , Oxigênio/química , Animais , Substitutos Sanguíneos/química , Varredura Diferencial de Calorimetria , Colesterol/química , Modelos Animais de Doenças , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Hemólise , Hipóxia/terapia , Cinética , Microscopia Eletrônica de Varredura , Oxigênio/uso terapêutico , Oxigênio/toxicidade , Tamanho da Partícula , Fosfatidilcolinas/química
18.
PLoS One ; 7(5): e36788, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590609

RESUMO

BACKGROUND: Administration of a recombinant peptide of Periostin (rPN) has recently been shown to stimulate cardiomyocyte proliferation and angiogenesis after myocardial infarction (MI) [1]. However, strategies for targeting the delivery of rPN to the heart are lacking. Intrapericardial administration of drug-eluting hydrogels may provide a clinically viable strategy for increasing myocardial retention, therapeutic efficacy, and bioactivity of rPN and to decrease systemic re-circulation. METHODS AND RESULTS: We investigated the ability of intrapericardial injections of drug-eluting hydrogels to deliver and prolong the release of rPN to the myocardium in a large animal model of myocardial infarction. Gelfoam is an FDA-approved hemostatic material commonly used in surgery, and is known to stimulate fibrin clot formation. We show that Gelfoam disks loaded with rPN, when implanted within the pericardium or peritoneum of mammals becomes encapsulated within a non-fibrotic fibrin-rich hydrogel, prolonging the in vitro and in vivo release of rPN. Administration into the pericardial cavity of pigs, following a complete occlusion of the left anterior descending artery, leads to greater induction of cardiomyocyte mitosis, increased cardiomyocyte cell cycle activity, and enhanced angiogenesis compared to direct injection of rPN alone. CONCLUSIONS: The results of this study suggest that intrapericardial drug delivery of Gelfoam, enhanced by triggered clot formation, can be used to effectively deliver rPN to the myocardium in a clinically relevant model of myocardial infarction. The work presented here should enhance the translational potential of pharmaceutical-based strategies that must be targeted to the myocardium.


Assuntos
Moléculas de Adesão Celular/farmacologia , Esponja de Gelatina Absorvível/farmacologia , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/efeitos dos fármacos , Peptídeos/farmacologia , Animais , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Preparações de Ação Retardada/farmacologia , Feminino , Fibrina/metabolismo , Hemostáticos , Humanos , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pericárdio/metabolismo , Pericárdio/patologia , Proteínas Recombinantes/farmacologia , Suínos
19.
Biomacromolecules ; 9(4): 1084-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18351741

RESUMO

Hydrogels formed from (meth)acrylated poly(ethylene glycol) precursors are commonly used in a variety of biomedical applications ranging from tissue engineering to biosensors. While this approach has proven quite diverse, a major limitation to this approach is the heterogeneities and nonidealities that arise in the gels from the chain polymerization process, which increases the difficulty in relating the network structure to the final physical properties of the gel. Here we have exploited the specificity and fidelity of the [3+2] cycloaddition reaction to synthesize hydrogels with controlled architectures and improved mechanical properties. Moreover, we demonstrate a general approach toward the integration of multifunctional photoreactive polypeptide sequences into the network structure that provides a facile way to independently tune the 3D chemical and physical properties of the gel. Standard photolithographic techniques were used to generate a variety of two- and three-dimensional patterns as well as controlled biochemical gradients within existing preformed hydrogels.


Assuntos
Hidrogéis/química , Luz , Fragmentos de Peptídeos/química , Fotoquímica , Polietilenoglicóis/química , Compostos de Sulfidrila/química , Hidrogéis/efeitos da radiação , Microscopia de Fluorescência , Engenharia de Proteínas
20.
Macromolecules ; 40(20): 7103-7110, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-19169374

RESUMO

Many recognition events important in biology are mediated via multivalent interactions between relevant oligosaccharides and multiple saccharide receptors present on lectins, viruses, toxins, and cell surfaces. Because of the important role played by protein-carbohydrate interactions in these pathogenic recognition events and in other human diseases, considerable effort has been devoted toward the development of multivalent polymeric ligands for carbohydrate-binding proteins. In this work, we report the synthesis of new polypeptide-based glycopolymers produced via a combination of protein engineering and chemical methods. These methodologies permit control over the number and the spacing of saccharides on the scaffold, as well as the conformation of the polymer backbone, and allow a more purposeful design of polymers for manipulation of multivalent binding events. Two families of galactose-bearing glycopolypeptides with random coil conformations, [(AG)(3)PEG](y) (y = 10 and 16) and {[(AG)(2)PSG](2)[(AG)(2)PEG][(AG)(2)PSG](2)}(y) (y = 6), have been synthesized. The carboxylic acid functionality of the glutamic acid residues allowed subsequent modification with amino-saccharides to yield the desired glycopolypeptides; selective placement of the glutamic acid group permitted investigation of the effects of multivalency and saccharide spacing on toxin inhibition. In addition, a family of galactose-functionalized PGA-based glycopolymers of varying molecular weights was also synthesized to compare the effects of backbone flexibility and hydrodynamic volume, relative to the recombinant glycopolypeptides, on toxin inhibition. Glycopolypeptides were characterized via (1)H NMR, MALDI-TOF mass spectrometry, SDS-PAGE analysis, and spectrophotometric assays. They were tested as inhibitors of the binding of the cholera toxin B subunit via direct enzyme-linked assays. The data from these experiments confirm the relevance of appropriate saccharide spacing on controlling the binding event and also indicate the influence of chain extension in improving inhibition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA