Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36679046

RESUMO

Isoprene-emitting plants are better protected against thermal and oxidative stresses, which is a desirable trait in a climate-changing (drier and warmer) world. Here we compared the ecophysiological performances of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual environmental conditions (400 ppm of CO2 and 28 °C of average daily temperature) and in a future climate scenario (600 ppm of CO2 and 32 °C of average daily temperature). Furthermore, we intended to complement the present knowledge on the mechanisms involved in isoprene-induced resistance to water deficit stress by examining the proteome of transgenic isoprene-emitting and wild-type non-emitting tobacco plants during water stress and after re-watering in actual climate. Isoprene emitters maintained higher photosynthesis and electron transport rates under moderate stress in future climate conditions. However, physiological resistance to water stress in the isoprene-emitting plants was not as marked as expected in actual climate conditions, perhaps because the stress developed rapidly. In actual climate, isoprene emission capacity affected the tobacco proteomic profile, in particular by upregulating proteins associated with stress protection. Our results strengthen the hypothesis that isoprene biosynthesis is related to metabolic changes at the gene and protein levels involved in the activation of general stress defensive mechanisms of plants.

2.
New Phytol ; 223(3): 1307-1318, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980545

RESUMO

At high temperatures, isoprene-emitting plants display a higher photosynthetic rate and a lower nonphotochemical quenching (NPQ) compared with nonemitting plants. The mechanism of this phenomenon, which may be very important under current climate warming, is still elusive. NPQ was dissected into its components, and chlorophyll fluorescence lifetime imaging microscopy (FLIM) was used to analyse the dynamics of excited chlorophyll relaxation in isoprene-emitting and nonemitting plants. Thylakoid membrane stiffness was also measured using atomic force microscope (AFM) to identify a possible mode of action of isoprene in improving photochemical efficiency and photosynthetic stability. We show that, when compared with nonemitters, isoprene-emitting tobacco plants exposed at high temperatures display a reduced increase of the NPQ energy-dependent component (qE) and stable (1) chlorophyll fluorescence lifetime; (2) amplitude of the fluorescence decay components; and (3) thylakoid membrane stiffness. Our study shows for the first time that isoprene maintains PSII stability at high temperatures by preventing the modifications of the surrounding environment, namely providing a more steady and homogeneous distribution of the light-absorbing centres and a stable thylakoid membrane stiffness. Isoprene photoprotects leaves with a mechanism alternative to NPQ, enabling plants to maintain a high photosynthetic rate at rising temperatures.


Assuntos
Butadienos/metabolismo , Hemiterpenos/metabolismo , Temperatura Alta , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Fluorescência , Fotossíntese , Estabilidade Proteica
3.
J Exp Bot ; 65(6): 1565-70, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24676032

RESUMO

Isoprene-emitting plants are better protected against thermal and oxidative stresses. Isoprene may strengthen membranes avoiding their denaturation and may quench reactive oxygen and nitrogen species, achieving a similar protective effect. The physiological role of isoprene in unstressed plants, up to now, is not understood. It is shown here, by monitoring the non-photochemical quenching (NPQ) of chlorophyll fluorescence of leaves with chemically or genetically altered isoprene biosynthesis, that chloroplasts of isoprene-emitting leaves dissipate less energy as heat than chloroplasts of non-emitting leaves, when exposed to physiologically high temperatures (28-37 °C) that do not impair the photosynthetic apparatus. The effect was especially remarkable at foliar temperatures between 30 °C and 35 °C, at which isoprene emission is maximized and NPQ is quenched by about 20%. Isoprene may also allow better stability of photosynthetic membranes and a more efficient electron transfer through PSII at physiological temperatures, explaining most of the NPQ reduction and the slightly higher photochemical quenching that was also observed in isoprene-emitting leaves. The possibility that isoprene emission helps in removing thermal energy at the thylakoid level is also put forward, although such an effect was calculated to be minimal. These experiments expand current evidence that isoprene is an important trait against thermal and oxidative stresses and also explains why plants invest resources in isoprene under unstressed conditions. By improving PSII efficiency and reducing the need for heat dissipation in photosynthetic membranes, isoprene emitters are best fitted to physiologically high temperatures and will have an evolutionary advantage when adapting to a warming climate.


Assuntos
Arabidopsis/química , Butadienos/metabolismo , Hemiterpenos/metabolismo , Nicotiana/química , Pentanos/metabolismo , Populus/química , Estresse Fisiológico , Arabidopsis/fisiologia , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Transporte de Elétrons , Temperatura Alta , Fotossíntese/fisiologia , Folhas de Planta/química , Folhas de Planta/fisiologia , Populus/fisiologia , Nicotiana/fisiologia
4.
Am J Med Genet A ; 136A(4): 368-72, 2005 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16007597

RESUMO

Non-syndromic cleft lip with or without cleft palate (CL/P) is a common birth defect with substantial clinical and social impact and whose causes include both genetic and environmental factors. Folate and homocysteine (Hcy) metabolism have been indicated to play a role in the etiology of CL/P, and polymorphisms in folate and Hcy genes may act as susceptibility factors. We investigated a common polymorphism in the cystathionine beta-synthase (CBS) gene (c.844ins68) in 134 Italian CL/P cases and their parents using the transmission disequilibrium test (TDT). Although no overall linkage disequilibrium was observed, considering the parent-of-origin transmission of the CBS 68 bp insertion a significant (P = 0.002) transmission distortion was detected. When children receive the c.844ins68 allele from the mother compared to the father, they show a 18.7-fold increase in risk for CL/P. This evidence suggests CBS as a candidate gene for CL/P and supports a role of maternal-embryo interactions in the etiology of CL/P.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Cistationina beta-Sintase/genética , Polimorfismo Genético , Alelos , Fenda Labial/complicações , Fenda Labial/enzimologia , Fissura Palatina/complicações , Fissura Palatina/enzimologia , Feminino , Frequência do Gene , Genótipo , Humanos , Itália , Desequilíbrio de Ligação , Masculino , Núcleo Familiar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA