Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 13(7): 243, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37346390

RESUMO

The 'enzyme prodrug therapy' represents a promising strategy to overcome limitations of current cancer treatments by the systemic administration of prodrugs, converted by a foreign enzyme into an active anticancer compound directly in tumor sites. One example is D-amino acid oxidase (DAAO), a dimeric flavoenzyme able to catalyze the oxidative deamination of D-amino acids with production of hydrogen peroxide, a reactive oxygen species (ROS), able to favor cancer cells death. A DAAO variant containing five aminoacidic substitutions (mDAAO) was demonstrated to possess a better therapeutic efficacy under low O2 concentration than wild-type DAAO (wtDAAO). Recently, aiming to design promising nanocarriers for DAAO, multi-walled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG) to reduce their tendency to aggregation and to improve their biocompatibility. Here, wtDAAO and mDAAO were adsorbed on PEGylated MWCNTs and their activity and cytotoxicity were tested. While PEG-MWCNTs-DAAOs have shown a higher activity than pristine MWCNTs-DAAO (independently on the DAAO variant used), PEG-MWCNTs-mDAAO showed a higher cytotoxicity than PEG-MWCNTs-wtDAAO at low O2 concentration. In order to evaluate the nanocarriers' biocompatibility, PEG-MWCNTs-DAAOs were incubated in human serum and the composition of protein corona was investigated via nLC-MS/MS, aiming to characterize both soft and hard coronas. The mDAAO variant has influenced the bio-corona composition in both number of proteins and presence of opsonins and dysopsonins: notably, the soft corona of PEG-MWCNTs-mDAAO contained less proteins and was more enriched in proteins able to inhibit the immune response than PEG-MWCNTs-wtDAAO. Considering the obtained results, the PEGylated MWCNTs conjugated with the mDAAO variant seems a promising candidate for a selective antitumor oxidative therapy: under anoxic-like conditions, this novel drug delivery system showed a remarkable cytotoxic effect controlled by the substrate addition, against different tumor cell lines, and a bio-corona composition devoted to prolong its blood circulation time, thus improving the drug's biodistribution. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03568-1.

2.
Protein Sci ; 32(4): e4609, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36851825

RESUMO

Organisms from all kingdoms of life synthesize L-serine (L-Ser) from 3-phosphoglycerate through the phosphorylated pathway, a three-step diversion of glycolysis. Phosphoserine aminotransferase (PSAT) catalyzes the intermediate step, the pyridoxal 5'-phosphate-dependent transamination of 3-phosphohydroxypyruvate and L-glutamate to O-phosphoserine (OPS) and α-ketoglutarate. PSAT is particularly relevant in the central nervous system of mammals because L-Ser is the metabolic precursor of D-serine, cysteine, phospholipids, and nucleotides. Several mutations in the human psat gene have been linked to serine deficiency disorders, characterized by severe neurological symptoms. Furthermore, PSAT is overexpressed in many tumors and this overexpression has been associated with poor clinical outcomes. Here, we report the detailed functional and structural characterization of the recombinant human PSAT. The reaction catalyzed by PSAT is reversible, with an equilibrium constant of about 10, and the enzyme is very efficient, with a kcat /Km of 5.9 × 106  M-1  s-1 , thus contributing in driving the pathway towards the products despite the extremely unfavorable first step catalyzed by 3-phosphoglycerate dehydrogenase. The 3D X-ray crystal structure of PSAT was solved in the substrate-free as well as in the OPS-bound forms. Both structures contain eight protein molecules in the asymmetric unit, arranged in four dimers, with a bound cofactor in each subunit. In the substrate-free form, the active site of PSAT contains a sulfate ion that, in the substrate-bound form, is replaced by the phosphate group of OPS. Interestingly, fast crystal soaking used to produce the substrate-bound form allowed the trapping of different intermediates along the catalytic cycle.


Assuntos
Serina , Transaminases , Animais , Humanos , Sistema Nervoso Central/metabolismo , Mamíferos , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo , Transaminases/química
3.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834677

RESUMO

α-amino acids exist in two configurations, named D-(dextro) and L-(levo) enantiomers. L-amino acids are used in protein synthesis and play a central role in cell metabolism. The effects of the L-amino acid composition of foods and the dietary modifications of this composition on the efficacy of cancer therapies have been widely investigated in relation to the growth and reproduction of cancerous cells. However, less is known about the involvement of D-amino acids. In recent decades, D-amino acids have been identified as natural biomolecules that play interesting and specific roles as common components of the human diet. Here, we focus on recent investigations showing altered D-amino acid levels in specific cancer types and on the various roles proposed for these biomolecules related to cancer cell proliferation, cell protection during therapy, and as putative, innovative biomarkers. Notwithstanding recent progress, the relationship between the presence of D-amino acids, their nutritional value, and cancer cell proliferation and survival represents an underrated scientific issue. Few studies on human samples have been reported to date, suggesting a need for routine analysis of D-amino acid content and an evaluation of the enzymes involved in regulating their levels in clinical samples in the near future.


Assuntos
Aminoácidos , Neoplasias , Humanos , Aminoácidos/metabolismo , Estereoisomerismo , Dieta , Valor Nutritivo
4.
ChemSusChem ; 15(20): e202201147, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35917230

RESUMO

A laccase-Lig multienzymatic multistep system for lignin depolymerization was designed and developed. Studies were performed on pristine and fractionated lignins (Kraft and Organosolv) using a specific cascade of enzymes, that is, laccases from Bacillus licheniformis and from Funalia trogii, respectively for Kraft and Organosolv lignin, followed by the Lig system from Sphingobium sp. SYK-6 (ß-etherases Lig E and Lig F, glutathione lyase Lig G). Careful elucidation of the structural modifications occurring in the residual lignins associated with the identification and quantification of the generated low-molecular-weight compounds showed that (i) the laccase-Lig system cleaves non-phenolic aryl glycerol ß-O-4 aryl ether bonds, and (ii) the overall reactivity is heavily dependent on the individual lignin structure. More specifically, samples with low phenolic/aliphatic OH groups ratio undergo net depolymerization, while an increased phenolic/aliphatic OH ratio results in the polymerization of the residual lignin irrespective of its botanical origin and isolation process.


Assuntos
Lignina , Liases , Lignina/química , Lacase/química , Glicerol , Éteres , Glutationa
5.
Mol Biotechnol ; 64(10): 1164-1176, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35467257

RESUMO

The oxidation therapy, based on the controlled production of Reactive Oxygen Species directly into the tumor site, was introduced as alternative antitumor approach. For this purpose, d-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, an enzyme able to efficiently catalyze the production of hydrogen peroxide from d-amino acids, was adsorbed onto multi-walled carbon nanotubes (MWCNTs), previously functionalized with polylactic-co-glycolic acid (PLGA) or polyethylene glycol (PEG) at different degrees to reduce their toxicity, to be targeted directly into the tumor. In vitro activity and cytotoxicity assays demonstrated that DAAO-functionalized nanotubes (f-MWCNTs) produced H2O2 and induced toxic effects to selected tumor cell lines. After incubation in human plasma, the protein corona was investigated by SDS-PAGE and mass spectrometry analysis. The enzyme nanocarriers generally seemed to favor their biocompatibility, promoting the interaction with dysopsonins. Despite this, PLGA or high degree of PEGylation promoted the adsorption of immunoglobulins with a possible activation of immune response and this effect was probably due to PLGA hydrophobicity and dimensions and to the production of specific antibodies against PEG. In conclusion, the PEGylated MWCNTs at low degree seemed the most biocompatible nanocarrier for adsorbed DAAO, preserving its anticancer activity and forming a bio-corona able to reduce both defensive responses and blood clearance.


Assuntos
Nanotubos de Carbono , Adsorção , Aminoácidos , Humanos , Peróxido de Hidrogênio , Nanotubos de Carbono/química , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia
6.
Curr Med Chem ; 29(24): 4202-4215, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34823459

RESUMO

BACKGROUND: D-amino acids are present in the human body originating from diet, bacterial flora, and endogenous synthesis (at least for D-serine and, probably, D-aspartate). D-amino acids are involved in important physiological processes (e.g., D-serine and D-aspartate act on the N-methyl-D-aspartate receptor as co-agonist and agonist, respectively) and increasing evidence links D-amino acids to different pathological states. METHODS: Determination of D-amino acids levels in blood is mainly based on enantiomeric separations by high performance liquid chromatography. Because of the low amount of D-enantiomers compared to the corresponding L-amino acids and the high background noise associated with biological matrices, positive and negative controls are absolutely required to obtain reliable values. RESULTS: Altered levels of D-serine in blood have been reported in several neurological and psychiatric disorders: it has been proposed as promising biomarker in schizophrenia, Alzheimer's disease, and amyotrophic lateral sclerosis. Indeed, D-serine levels seem an appropriate predictor of anti-depressant response in major depressive disorder and posttraumatic stress disorder, as well as a prognostic biomarker of early cognitive decline, especially when considering D-serine and D-proline levels simultaneously. Furthermore, D-amino acids seem useful biomarkers for pathologies not related to the central nervous system, such as pancreatic cancer and chronic kidney diseases. CONCLUSION: This is the first review focusing on the determination of blood levels of Damino acids as diagnostic and prognostic biomarkers. The experimental evidence of involvement of D-amino acids in various physiological pathways suggest investigating their levels in additional pathologies too, such as diabetes mellitus. In conclusion, the levels of D-amino acids in blood may represent novel diagnostic peripheral biomarkers for various disorders. Further studies are required to standardize/automatize the determinations and for confirming their clinical effectiveness.


Assuntos
Aminoácidos , Transtorno Depressivo Maior , Aminoácidos/química , Biomarcadores , Ácido D-Aspártico , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/química , Serina/metabolismo
7.
Biofactors ; 48(2): 384-399, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34608689

RESUMO

A number of approaches have been developed over the years to manage cancer, such as chemotherapy using low-molecular-mass molecules and radiotherapy. Here, enzymes can also find useful applications. Among them, oxidases have attracted attention because of their ability to produce reactive oxygen species (ROS, especially hydrogen peroxide) in tumors and potentially modulate the production of this cytotoxic compound when enzymes active on substrates present in low amounts are used, such as the d-amino acid oxidase and d-amino acid couple system. These treatments have been also developed for additional cancer treatment approaches, such as phototherapy, nutrient starvation, and metal-induced hydroxyl radical production. In addition, to improve tumor specificity and decrease undesired side effects, oxidases have been targeted by means of nanotechnologies and protein engineering (i.e., by designing chimeric proteins able to accumulate in the tumor). The most recent advances obtained by using six different oxidases (i.e., the FAD-containing enzymes glucose oxidase, d- and l-amino acid oxidases, cholesterol oxidase and xanthine oxidase, and the copper-containing amine oxidase) have been reported. Anticancer therapy based on oxidase-based ROS production has now reached maturity and can be applied in the clinic.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
8.
Nanomedicine ; 36: 102424, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174417

RESUMO

In order to generate an antibody directed enzyme prodrug therapy, here we designed a chimeric protein by fusing the F8 antibody that recognizes the EDA of fibronectin (expressed on the tumor neovasculature) and an evolved variant of the ROS-generating enzyme D-amino acid oxidase (DAAO). The F8(scFv)-DAAO-Q144R recombinant protein is expressed by both CHO-S and E. coli cells. The F8(scFv)-DAAO-Q144R from E. coli cells is fully soluble, shows a high specific activity, is more thermostable in blood than the native DAAO, possesses a binding affinity for EDA well suited for efficient tumor accumulation, and localizes in tumor tissues. Notably, the F8(scFv)-DAAO-Q144R conjugate generates a stronger cytotoxicity to tumor cells than the native enzyme, especially when an inhibitor of heme oxygenase-1 (HO-1) is used, making it a promising candidate for a selective antitumor oxidative therapy controlled by the substrate addition, in the so called "activity on demand", thus sparing normal tissue from damage.


Assuntos
Anticorpos Monoclonais Humanizados , Antineoplásicos , Citotoxinas , D-Aminoácido Oxidase , Fibronectinas , Proteínas de Neoplasias , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Animais , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Células CHO , Células COS , Chlorocebus aethiops , Cricetulus , Citotoxinas/química , Citotoxinas/farmacologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/farmacologia , Fibronectinas/antagonistas & inibidores , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/farmacologia
9.
Int J Mol Sci ; 22(8)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921788

RESUMO

The human enzyme D-3-phosphoglycerate dehydrogenase (hPHGDH) catalyzes the reversible dehydrogenation of 3-phosphoglycerate (3PG) into 3-phosphohydroxypyruvate (PHP) using the NAD+/NADH redox cofactor, the first step in the phosphorylated pathway producing L-serine. We focused on the full-length enzyme that was produced in fairly large amounts in E. coli cells; the effect of pH, temperature and ligands on hPHGDH activity was studied. The forward reaction was investigated on 3PG and alternative carboxylic acids by employing two coupled assays, both removing the product PHP; 3PG was by far the best substrate in the forward direction. Both PHP and α-ketoglutarate were efficiently reduced by hPHGDH and NADH in the reverse direction, indicating substrate competition under physiological conditions. Notably, neither PHP nor L-serine inhibited hPHGDH, nor did glycine and D-serine, the coagonists of NMDA receptors related to L-serine metabolism. The investigation of NADH and phosphate binding highlights the presence in solution of different conformations and/or oligomeric states of the enzyme. Elucidating the biochemical properties of hPHGDH will enable the identification of novel approaches to modulate L-serine levels and thus to reduce cancer progression and treat neurological disorders.


Assuntos
Fosfoglicerato Desidrogenase/metabolismo , Ácidos Carboxílicos/metabolismo , Escherichia coli/metabolismo , Glicina/metabolismo , Humanos , Cinética , NAD/metabolismo , Fosfoglicerato Desidrogenase/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
10.
FEBS J ; 288(16): 4939-4954, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33650155

RESUMO

Human d-aspartate oxidase (hDASPO) is a FAD-dependent enzyme responsible for the degradation of d-aspartate (d-Asp). In the mammalian central nervous system, d-Asp behaves as a classical neurotransmitter, it is thought to be involved in neural development, brain morphology and behavior, and appears to be involved in several pathological states, such as schizophrenia and Alzheimer's disease. Apparently, the human DDO gene produces alternative transcripts encoding for three putative hDASPO isoforms, constituted by 341 (the 'canonical' form), 369, and 282 amino acids. Despite the increasing interest in hDASPO and its physiological role, little is known about these different isoforms. Here, the additional N-terminal peptide present in the hDASPO_369 isoform only has been identified in hippocampus of Alzheimer's disease female patients, while peptides corresponding to the remaining part of the protein were present in samples from male and female healthy controls and Alzheimer's disease patients. The hDASPO_369 isoform was largely expressed in E. coli as insoluble protein, hampering with its biochemical characterization. Furthermore, we generated U87 human glioblastoma cell clones stably expressing hDASPO_341 and, for the first time, hDASPO_369 isoforms; the latter protein showed a lower expression compared with the canonical isoform. Both protein isoforms are active (showing similar kinetic properties), localize to the peroxisomes, are very stable (a half-life of approximately 100 h has been estimated), and are primarily degraded through the ubiquitin-proteasome system. These studies shed light on the properties of hDASPO isoforms with the final aim to clarify the mechanisms controlling brain levels of the neuromodulator d-Asp.


Assuntos
D-Aspartato Oxidase/metabolismo , Escherichia coli/metabolismo , D-Aspartato Oxidase/análise , D-Aspartato Oxidase/genética , Ácido D-Aspártico/metabolismo , Escherichia coli/citologia , Humanos , Isoenzimas/análise , Isoenzimas/genética , Isoenzimas/metabolismo , Células Tumorais Cultivadas
11.
Free Radic Res ; 54(6): 419-430, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32623917

RESUMO

pLG72 is a primate-specific protein of enigmatic function that was proposed to modulate mitochondria fragmentation and the activity of the peroxisomal enzyme D-amino acid oxidase (DAAO). DAAO is deputed to degradation of the NMDA receptor co-agonist D-serine in human brain and the R199W substitution in DAAO was identified in a familial case of amyotrophic lateral sclerosis (ALS). A recent work reported that U87 glioblastoma cells ectopically expressing pLG72 showed a lower proliferation, produced superoxide radicals, induced SOD1 aggregation and decreased its activity. Because of the role of SOD1 in eliminating ROS species and its relevance in ALS we evaluated the link between pLG72 and SOD1 using both wild-type pLG72 and its R30K variant related to schizophrenia susceptibility. In vitro studies on recombinant proteins excluded the establishment of a stable complex and that pLG72 could affect SOD1 activity and stability. At cellular level, ectopic expression of pLG72 in glioblastoma U87 cells did not affect cell viability and ROS/superoxide production: only caspase activity (a marker of apoptosis) was slightly increased in cells expressing the R30K pLG72 variant. SOD1 and pLG72 did not colocalize in transfected U87 glioblastoma cells: pLG72 largely localised to mitochondria and SOD1 was largely cytosolic. Moreover, the ectopic expression of pLG72 appeared not to alter the expression of SOD1 and its aggregation. Altogether, the combination of biochemical and cellular studies allow to exclude that pLG72 modulates SOD1 function and aggregation, thus that it could play a role in ALS susceptibility.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Superóxido Dismutase-1/genética , Superóxidos/metabolismo , Humanos , Transfecção
12.
Cell Mol Life Sci ; 77(24): 5131-5148, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32594192

RESUMO

L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Serina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Glicólise/genética , Humanos , Neurônios/metabolismo , Neurônios/patologia , Fosfoglicerato Desidrogenase/genética , Fosforilação/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/genética , Transdução de Sinais/genética
13.
Protein Expr Purif ; 174: 105675, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32450138

RESUMO

Members of the T2 extracellular ribonucleases family have long been reported as stress response proteins, often involved in host defence, in many different taxonomic groups. In particular, the human RNASET2 protein (hRNASET2) has been reported as an extracellular tumor suppressor protein, endowed with the ability to act as an "alarmin" signalling molecule following its expression and secretion in the tumor microenvironment by cancer cells and the subsequent recruitment and activation of cells belonging to the host innate immune system. Many in vitro and in vivo assays have been recently reported in support of the oncosuppressive role of hRNASET2: most of them relied on genetically engineered cell lines and the use of recombinant proteins from non-mammalian sources. In order to ensure a human-like glycosylation pattern, here we report for the first time the expression of recombinant hRNASET2 in the CHO-S cell line. We established a simple one-step chromatographic purification procedure that resulted in the production of 5 mg of endotoxin-free hRNASET2 per liter of culture, with a >95% purity degree. hRNASET2 expressed in CHO-S cells displayed a high degree of glycosylation homogeneity and a secondary structure content in agreement with that determined from the crystal structure. Indeed, recombinant hRNASET2 was active at both enzymatic and functional level, as stated by a biological activity assay. The availability of a pure, homogeneous recombinant human RNASET2 would provide a key tool to better investigate its non cell-autonomous roles in the context of cancer development and growth.


Assuntos
Expressão Gênica , Ribonucleases , Proteínas Supressoras de Tumor , Animais , Células CHO , Cricetulus , Glicosilação , Humanos , Proteínas Recombinantes , Ribonucleases/biossíntese , Ribonucleases/genética , Ribonucleases/isolamento & purificação , Proteínas Supressoras de Tumor/biossíntese , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/isolamento & purificação
14.
Front Immunol ; 11: 370, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210967

RESUMO

The innate immune response represents a first-line defense against pathogen infection that has been widely conserved throughout evolution. Using the invertebrate Hirudo verbana (Annelida, Hirudinea) as an experimental model, we show here that the RNASET2 ribonuclease is directly involved in the immune response against Gram-positive bacteria. Injection of lipoteichoic acid (LTA), a key component of Gram-positive bacteria cell wall, into the leech body wall induced a massive migration of granulocytes and macrophages expressing TLR2 (the key receptor involved in the response to Gram-positive bacteria) toward the challenged/inoculated area. We hypothesized that the endogenous leech RNASET2 protein (HvRNASET2) might be involved in the antimicrobial response, as already described for other vertebrate ribonucleases, such as RNase3 and RNase7. In support of our hypothesis, HvRNASET2 was mainly localized in the granules of granulocytes, and its release in the extracellular matrix triggered the recruitment of macrophages toward the area stimulated with LTA. The activity of HvRNASET2 was also evaluated on Staphylococcus aureus living cells by means of light, transmission, and scanning electron microscopy analysis. HvRNASET2 injection triggered the formation of S. aureus clumps following a direct interaction with the bacterial cell wall, as demonstrated by immunogold assay. Taken together, our data support the notion that, during the early phase of leech immune response, granulocyte-released HvRNASET2 triggers bacterial clumps formation and, at the same time, actively recruits phagocytic macrophages in order to elicit a rapid and effective eradication of the infecting microorganisms from inoculated area.


Assuntos
Hirudo medicinalis/imunologia , Imunidade Inata , Ribonucleases/fisiologia , Animais , Antígeno CD11b/fisiologia , Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , Fagocitose , Ácidos Teicoicos/farmacologia , Receptor 2 Toll-Like/fisiologia
15.
Nanomedicine ; 24: 102122, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31706037

RESUMO

The flavoenzyme D-amino acid oxidase (DAAO) represents a potentially good option for cancer enzyme prodrug therapy as it produces H2O2 using D-amino acids as substrates, compounds present at low concentration in vivo and that can be safely administered to regulate H2O2 production. We optimized the cytotoxicity of the treatment by: i) using an efficient enzyme variant active at low O2 and D-alanine concentrations (mDAAO); ii) improving the stability and half-life of mDAAO and the enhanced permeability and retention effect by PEGylation; and iii) inhibiting the antioxidant cellular system by a heme oxygenase-1 inhibitor (ZnPP). A very low amount of PEG-mDAAO (10 mU, 50 ng of enzyme) induces cytotoxicity on various tumor cell lines. Notably, PEG-mDAAO seems well suited for in vivo evaluation as it shows the same cytotoxicity at air saturation (21%) and 2.5% O2, a condition resembling the microenvironment found in the central part of tumors.


Assuntos
Basidiomycota/enzimologia , D-Aminoácido Oxidase , Proteínas Fúngicas , Polietilenoglicóis , Engenharia de Proteínas , Animais , Basidiomycota/genética , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/farmacologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/farmacologia , Neoplasias/metabolismo , Neoplasias/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
16.
Front Mol Biosci ; 6: 125, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799256

RESUMO

The peroxisomal enzyme human D-amino acid oxidase (hDAAO) is attracting attention owing to its role in degrading D-serine, the main co-agonist of N-methyl D-aspartate receptors in brain, and its involvement in brain functions and diseases. Here, we focused on arginine 120, a residue located at the protein interface, 20 Å from the assumed second ligand-binding site, showing a different orientation of the side chain in the hDAAO-benzoate complex, and corresponding to Ser119 in rat DAAO, which is part of a putative nuclear translocation signal (NTS). By substituting Arg120 in hDAAO with a glutamate (to mimic the active NTS) or a leucine (to eliminate the positive charge) the protein conformation, thermal stability, and kinetic properties are slightly altered, while the dimeric structure and the ligand-binding properties are unchanged. The most relevant alteration in Arg120 variants is the strongest interaction with FAD. Nevertheless, the activity assayed at low D-serine and FAD concentrations (resembling physiological conditions) was quite similar for wild-type and Arg120 hDAAO variants. These results resemble the ones obtained substituting another residue located at the interface region (i.e., the W209R variant), indicating that substitutions at the monomer-monomer interface mainly affects the FAD binding in hDAAO. Indeed, U87 glioblastoma cells transiently transfected for hDAAO variants show that substitution of Arg120 favors mistargeting: the increase in cytosolic localization observed for the variants promotes nuclear targeting, especially for the R120E hDAAO, without affecting cell viability. Notably, mistargeting to the nucleus is an innate process as it is apparent for the wild-type hDAAO, too: whether such a process is related to specific pathologic processes is still unknown.

17.
Nanomaterials (Basel) ; 9(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766754

RESUMO

Among nanocelluloses, bacterial nanocellulose (BNC) has proven to be a promising candidate in a range of biomedical applications, from topical wound dressings to tissue-engineering scaffolds. Chemical modifications and incorporation of bioactive molecules have been obtained, further increasing the potential of BNC. This study describes the incorporation of vancomycin and ciprofloxacin in BNC and in modified BNC to afford bioactive BNCs suitable for topical wound dressings and tissue-engineering scaffolds. BNC was modified by grafting glycidylmethacrylate (GMA) and further cross-linking with ethylene glycol dimethacrylate (EGDMA) with the formation of stable C-C bonds though a radical Fenton-type process that involves generation of cellulose carbon centred radicals scavenged by methacrylate structures. The average molar substitution degree MS (MS = methacrylate residue per glucose unit, measured by Fourier transform infrared (FT-IR) analysis) can be modulated in a large range from 0.1 up to 3. BNC-GMA, BNC-EGDMA and BNC-GMA-EGDMA maintain the hydrogel status until MS reaches the value of 1. The mechanical stress resistance increase of BNC-GMA and BNC-GMA-EGDMA of MS around 0.8 with respect to BNC suggests that they can be preferred to BNC for tissue-engineering scaffolds in cases where the resistance plays a crucial role. BNC, BNC-GMA, BNC-EGDMA and BNC-GMA-EGDMA were loaded with vancomycin (VC) and ciprofloxacin (CP) and submitted to release experiments. BNC-GMA-EGDMA of high substitution degree (0.7-1) hold up to 50 percentage of the loaded vancomycin and ciprofloxacin amount, suggesting that they can be further investigated for long-term antimicrobial activity. Furthermore, they were not colonized by Staphylococcus aureus (S.A.) and Klebsiella pneumonia (K.P.). Grafting and cross-linking BNC modification emerges from our results as a good choice to improve the BNC potential in biomedical applications like topical wound dressings and tissue-engineering scaffolds.

18.
FEBS J ; 286(13): 2505-2521, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30955232

RESUMO

About 90% of congenital central hypoventilation syndrome (CCHS) patients show polyalanine triplet expansions in the coding region of transcription factor PHOX2B, which renders this protein an intriguing target to understand the insurgence of this syndrome and for the design of a novel therapeutical approach. Consistently with the role of PHOX2B as a transcriptional regulator, it is reasonable that a general transcriptional dysregulation caused by the polyalanine expansion might represent an important mechanism underlying CCHS pathogenesis. Therefore, this study focused on the biochemical characterization of different PHOX2B variants, such as a variant containing the correct C-terminal (20 alanines) stretch, one of the most frequent polyalanine expansions (+7 alanines), and a variant lacking the complete alanine stretch (0 alanines). Comparison of the different variants by a multidisciplinary approach based on different methodologies (including circular dichroism, spectrofluorimetry, light scattering, and Atomic Force Microscopy studies) highlighted the propensity to aggregate for the PHOX2B variant containing the polyalanine expansion (+7-alanines), especially in the presence of DNA, while the 0-alanines variant resembled the protein with the correct polyalanine length. Moreover, and unexpectedly, the formation of fibrils was revealed only for the pathological variant, suggesting a plausible role of such fibrils in the insurgence of CCHS.


Assuntos
Proteínas de Homeodomínio/química , Multimerização Proteica , Fatores de Transcrição/química , Motivos de Aminoácidos , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação , Peptídeos/química , Peptídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Biochim Biophys Acta Proteins Proteom ; 1866(12): 1260-1270, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30268810

RESUMO

Methionine deprivation of cancer cells, which are deficient in methionine biosynthesis, has been envisioned as a therapeutic strategy to reduce cancer cell viability. Methionine γ-lyase (MGL), an enzyme that degrades methionine, has been exploited to selectively remove the amino acid from cancer cell environment. In order to increase MGL catalytic activity, we performed sequence and structure conservation analysis of MGLs from various microorganisms. Whereas most of the residues in the active site and at the dimer interface were found to be conserved, residues located in the C-terminal flexible loop, forming a wall of the active site entry channel, were found to be variable. Therefore, we carried out site-saturation mutagenesis at four independent positions of the C-terminal flexible loop, P357, V358, P360 and A366 of MGL from Citrobacter freundii, generating libraries that were screened for activity. Among the active variants, V358Y exhibits a 1.9-fold increase in the catalytic rate and a 3-fold increase in KM, resulting in a catalytic efficiency similar to wild type MGL. V358Y cytotoxic activity was assessed towards a panel of cancer and nonmalignant cell lines and found to exhibit IC50 lower than the wild type. The comparison of the 3D-structure of V358Y MGL with other MGL available structures indicates that the C-terminal loop is either in an open or closed conformation that does not depend on the amino acid at position 358. Nevertheless, mutations at this position allosterically affects catalysis.


Assuntos
Proteínas de Bactérias/metabolismo , Liases de Carbono-Enxofre/metabolismo , Citrobacter freundii/enzimologia , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cinética , Mutagênese Sítio-Dirigida , Engenharia de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
20.
PLoS One ; 13(4): e0196283, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29694413

RESUMO

L-Proline is a multifunctional amino acid that plays an essential role in primary metabolism and physiological functions. Proline is oxidized to glutamate in the mitochondria and the FAD-containing enzyme proline oxidase (PO) catalyzes the first step in L-proline degradation pathway. Alterations in proline metabolism have been described in various human diseases, such as hyperprolinemia type I, velo-cardio-facial syndrome/Di George syndrome, schizophrenia and cancer. In particular, the mutation giving rise to the substitution Leu441Pro was identified in patients suffering of schizophrenia and hyperprolinemia type I. Here, we report on the expression of wild-type and L441P variants of human PO in a U87 glioblastoma human cell line in an attempt to assess their effect on glutamate metabolism. The subcellular localization of the flavoenzyme is not altered in the L441P variant, for which specific activity is halved compared to the wild-type PO. While this decrease in activity is significantly less than that previously proposed, an effect of the substitution on the enzyme stability is also apparent in our studies. At 24 hours of growth from transient transfection, the intracellular level of proline, glutamate, and glutamine is decreased in cells expressing the PO variants as compared to control U87 cells, reaching a similar figure at 72 h. On the other hand, the extracellular levels of the three selected amino acids show a similar time course for all clones. Furthermore, PO overexpression does not modify to a significant extent the expression of GLAST and GLT-1 glutamate transporters. Altogether, these results demonstrate that the proline pathway links cellular proline levels with those of glutamate and glutamine. On this side, PO might play a regulatory role in glutamatergic neurotransmission by affecting the cellular concentration of glutamate.


Assuntos
Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Prolina Oxidase/metabolismo , Prolina/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Regulação para Baixo , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glioblastoma , Ácido Glutâmico/análise , Glutamina/análise , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Mutagênese Sítio-Dirigida , Prolina/análise , Prolina Oxidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA