Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 7(1): 785, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951178

RESUMO

Accurate, rapid and non-invasive cancer cell phenotyping is a pressing concern across the life sciences, as standard immuno-chemical imaging and omics require extended sample manipulation. Here we combine Raman micro-spectroscopy and phase tomography to achieve label-free morpho-molecular profiling of human colon cancer cells, following the adenoma, carcinoma, and metastasis disease progression, in living and unperturbed conditions. We describe how to decode and interpret quantitative chemical and co-registered morphological cell traits from Raman fingerprint spectra and refractive index tomograms. Our multimodal imaging strategy rapidly distinguishes cancer phenotypes, limiting observations to a low number of pristine cells in culture. This synergistic dataset allows us to study independent or correlated information in spectral and tomographic maps, and how it benefits cell type inference. This method is a valuable asset in biomedical research, particularly when biological material is in short supply, and it holds the potential for non-invasive monitoring of cancer progression in living organisms.


Assuntos
Fenótipo , Análise Espectral Raman , Humanos , Análise Espectral Raman/métodos , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Neoplasias do Colo/diagnóstico por imagem , Neoplasias do Colo/metabolismo , Linhagem Celular Tumoral
2.
Nat Commun ; 15(1): 5119, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879572

RESUMO

One open question in the biology of growth factor receptors is how a quantitative input (i.e., ligand concentration) is decoded by the cell to produce specific response(s). Here, we show that an EGFR endocytic mechanism, non-clathrin endocytosis (NCE), which is activated only at high ligand concentrations and targets receptor to degradation, requires a tripartite organelle platform involving the plasma membrane (PM), endoplasmic reticulum (ER) and mitochondria. At these contact sites, EGFR-dependent, ER-generated Ca2+ oscillations are sensed by mitochondria, leading to increased metabolism and ATP production. Locally released ATP is required for cortical actin remodeling and EGFR-NCE vesicle fission. The same biochemical circuitry is also needed for an effector function of EGFR, i.e., collective motility. The multiorganelle signaling platform herein described mediates direct communication between EGFR signaling and mitochondrial metabolism, and is predicted to have a broad impact on cell physiology as it is activated by another growth factor receptor, HGFR/MET.


Assuntos
Trifosfato de Adenosina , Endocitose , Retículo Endoplasmático , Receptores ErbB , Mitocôndrias , Transdução de Sinais , Mitocôndrias/metabolismo , Receptores ErbB/metabolismo , Retículo Endoplasmático/metabolismo , Humanos , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo
3.
Anal Chem ; 96(23): 9468-9477, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38821490

RESUMO

Leukemia comprises a diverse group of bone marrow tumors marked by cell proliferation. Current diagnosis involves identifying leukemia subtypes through visual assessment of blood and bone marrow smears, a subjective and time-consuming method. Our study introduces the characterization of different leukemia subtypes using a global clustering approach of Raman hyperspectral maps of cells. We analyzed bone marrow samples from 19 patients, each presenting one of nine distinct leukemia subtypes, by conducting high spatial resolution Raman imaging on 319 cells, generating over 1.3 million spectra in total. An automated preprocessing pipeline followed by a single-step global clustering approach performed over the entire data set identified relevant cellular components (cytoplasm, nucleus, carotenoids, myeloperoxidase (MPO), and hemoglobin (HB)) enabling the unsupervised creation of high-quality pseudostained images at the single-cell level. Furthermore, this approach provided a semiquantitative analysis of cellular component distribution, and multivariate analysis of clustering results revealed the potential of Raman imaging in leukemia research, highlighting both advantages and challenges associated with global clustering.


Assuntos
Leucemia , Análise Espectral Raman , Análise Espectral Raman/métodos , Humanos , Leucemia/patologia , Análise por Conglomerados , Peroxidase/metabolismo
4.
Biosensors (Basel) ; 13(11)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998148

RESUMO

Wild-type p53 cancer therapy-induced senescent cells frequently engulf and degrade neighboring ones inside a massive vacuole in their cytoplasm. After clearance of the internalized cell, the vacuole persists, seemingly empty, for several hours. Despite large vacuoles being associated with cell death, this process is known to confer a survival advantage to cancer engulfing cells, leading to therapy resistance and tumor relapse. Previous attempts to resolve the vacuolar structure and visualize their content using dyes were unsatisfying for lack of known targets and ineffective dye penetration and/or retention. Here, we overcame this problem by applying optical diffraction tomography and Raman spectroscopy to MCF7 doxorubicin-induced engulfing cells. We demonstrated a real ability of cell tomography and Raman to phenotype complex microstructures, such as cell-in-cells and vacuoles, and detect chemical species in extremely low concentrations within live cells in a completely label-free fashion. We show that vacuoles had a density indistinguishable to the medium, but were not empty, instead contained diluted cell-derived macromolecules, and we could discern vacuoles from medium and cells using their Raman fingerprint. Our approach is useful for the noninvasive investigation of senescent engulfing (and other peculiar) cells in unperturbed conditions, crucial for a better understanding of complex biological processes.


Assuntos
Neoplasias , Vacúolos , Humanos , Vacúolos/fisiologia , Citoplasma , Doxorrubicina , Microscopia Confocal , Tomografia
5.
Sci Adv ; 9(37): eadg6231, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703362

RESUMO

Anticancer therapy screening in vitro identifies additional treatments and improves clinical outcomes. Systematically, although most tested cells respond to cues with apoptosis, an appreciable portion enters a senescent state, a critical condition potentially driving tumor resistance and relapse. Conventional screening protocols would strongly benefit from prompt identification and monitoring of therapy-induced senescent (TIS) cells in their native form. We combined complementary all-optical, label-free, and quantitative microscopy techniques, based on coherent Raman scattering, multiphoton absorption, and interferometry, to explore the early onset and progression of this phenotype, which has been understudied in unperturbed conditions. We identified TIS manifestations as early as 24 hours following treatment, consisting of substantial mitochondrial rearrangement and increase of volume and dry mass, followed by accumulation of lipid vesicles starting at 72 hours. This work holds the potential to affect anticancer treatment research, by offering a label-free, rapid, and accurate method to identify initial TIS in tumor cells.


Assuntos
Neoplasias , Humanos , Prevenção Secundária , Apoptose , Sinais (Psicologia) , Imagem Molecular
6.
Front Chem ; 11: 1213981, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426334

RESUMO

The success of chemotherapy and radiotherapy anti-cancer treatments can result in tumor suppression or senescence induction. Senescence was previously considered a favorable therapeutic outcome, until recent advancements in oncology research evidenced senescence as one of the culprits of cancer recurrence. Its detection requires multiple assays, and nonlinear optical (NLO) microscopy provides a solution for fast, non-invasive, and label-free detection of therapy-induced senescent cells. Here, we develop several deep learning architectures to perform binary classification between senescent and proliferating human cancer cells using NLO microscopy images and we compare their performances. As a result of our work, we demonstrate that the most performing approach is the one based on an ensemble classifier, that uses seven different pre-trained classification networks, taken from literature, with the addition of fully connected layers on top of their architectures. This approach achieves a classification accuracy of over 90%, showing the possibility of building an automatic, unbiased senescent cells image classifier starting from multimodal NLO microscopy data. Our results open the way to a deeper investigation of senescence classification via deep learning techniques with a potential application in clinical diagnosis.

7.
J Phys Chem B ; 127(21): 4733-4745, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37195090

RESUMO

Coherent anti-Stokes Raman scattering (CARS) microscopy is an emerging nonlinear vibrational imaging technique that delivers label-free chemical maps of cells and tissues. In narrowband CARS, two spatiotemporally superimposed picosecond pulses, pump and Stokes, illuminate the sample to interrogate a single vibrational mode. Broadband CARS (BCARS) combines narrowband pump pulses with broadband Stokes pulses to record broad vibrational spectra. Despite recent technological advancements, BCARS microscopes still struggle to image biological samples over the entire Raman-active region (400-3100 cm-1). Here, we demonstrate a robust BCARS platform that answers this need. Our system is based on a femtosecond ytterbium laser at a 1035 nm wavelength and a 2 MHz repetition rate, which delivers high-energy pulses used to produce broadband Stokes pulses by white-light continuum generation in a bulk YAG crystal. Combining such pulses, pre-compressed to sub-20 fs duration, with narrowband pump pulses, we generate a CARS signal with a high (<9 cm-1) spectral resolution in the whole Raman-active window, exploiting both the two-color and three-color excitation mechanisms. Aided by an innovative post-processing pipeline, our microscope allows us to perform high-speed (≈1 ms pixel dwell time) imaging over a large field of view, identifying the main chemical compounds in cancer cells and discriminating tumorous from healthy regions in liver slices of mouse models, paving the way for applications in histopathological settings.


Assuntos
Luz , Microscopia , Animais , Camundongos , Análise Espectral Raman/métodos , Microscopia Óptica não Linear , Lasers
8.
Int J Biochem Cell Biol ; 159: 106419, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086817

RESUMO

Iron chelators, such as deferoxamine, exert an anticancer effect by altering the activity of biomolecules critical for regulation of the cell cycle, cell metabolism, and apoptotic processes. Thus, iron chelators are sometimes used in combination with radio- and/or chemotherapy in the treatment of cancer. The possibility that deferoxamine could induce a program of senescence similar to radio- and/or chemotherapy, fostering adaptation in the treatment of cancer cells, is not fully understood. Using established biochemical techniques, biomarkers linked to lipid composition, and coherent anti-Stokes Raman scattering microscopy, we demonstrated that hepatocellular carcinoma-derived HepG2 cells survive after deferoxamine treatment, acquiring phenotypic traits and representative hallmarks of senescent cells. The results support the view that deferoxamine acts in HepG2 cells to produce oxidative stress-induced senescence by triggering sequential mitochondrial and lysosomal dysfunction accompanied by autophagy blockade. We also focused on the lipidome of senescent cells after deferoxamine treatment. Using mass spectrometry, we found that the deferoxamine-induced senescent cells presented marked remodeling of the phosphoinositol, sulfatide, and cardiolipin profiles, which all play a central role in cell signaling cascades, intracellular membrane trafficking, and mitochondria functions. Detection of alterations in glycosphingolipid sulfate species suggested modifications in ceramide generation, and turnover is frequently described in cancer cell survival and resistance to chemotherapy. Blockade of ceramide generation may explain autophagic default, resistance to apoptosis, and the onset of senescence.


Assuntos
Desferroxamina , Sulfoglicoesfingolipídeos , Humanos , Desferroxamina/farmacologia , Desferroxamina/metabolismo , Sulfoglicoesfingolipídeos/metabolismo , Sulfoglicoesfingolipídeos/farmacologia , Células Hep G2 , Quelantes de Ferro/farmacologia , Quelantes de Ferro/metabolismo , Mitocôndrias/metabolismo , Senescência Celular
9.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187392

RESUMO

Three-dimensional culture systems and suitable substrates topographies demonstrated to drive stem cell fate in vitro by mechanical conditioning. For example, the Nichoid 3D scaffold remodels stem cells and shapes nuclei, thus promoting stem cell expansion and stemness maintenance. However, the mechanisms involved in force transmission and in biochemical signaling at the basis of fate determination are not yet clear. Among the available investigation systems, confocal fluorescence microscopy using fluorescent dyes enables the observation of cell function and shape at the subcellular scale in vital and fixed conditions. Contrarily, nonlinear optical microscopy techniques, which exploit multi-photon processes, allow to study cell behavior in vital and unlabeled conditions. We apply confocal fluorescence microscopy, coherent anti-Stokes Raman scattering (CARS), and second harmonic generation (SHG) microscopy to characterize the phenotypic expression of mesenchymal stem cells (MSCs) towards adipogenic and chondrogenic differentiation inside Nichoid scaffolds, in terms of nuclear morphology and specific phenotypic products, by comparing these techniques. We demonstrate that the Nichoid maintains a rounded nuclei during expansion and differentiation, promoting MSCs adipogenic differentiation while inhibiting chondrogenesis. We show that CARS and SHG techniques are suitable for specific estimation of the lipid and collagenous content, thus overcoming the limitations of using unspecific fluorescent probes.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Alicerces Teciduais/química , Adipogenia/fisiologia , Animais , Células Cultivadas , Condrogênese/fisiologia , Corantes Fluorescentes/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microscopia Confocal/métodos , Ratos , Análise Espectral Raman/métodos
10.
J Exp Clin Cancer Res ; 37(1): 75, 2018 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615075

RESUMO

BACKGROUND: Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. METHODS: We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. RESULTS: These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. CONCLUSIONS: Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial subjects for future mechanistic and clinical studies.


Assuntos
Neoplasias da Mama/metabolismo , Quelantes de Ferro/farmacologia , Ferro/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Desferroxamina/farmacologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteoma , Proteômica/métodos , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA