Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 67(3): 2152-2164, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38237049

RESUMO

Retinoid X receptors (RXRs, NR2B1-3) hold therapeutic potential in oncology, neurodegeneration, and metabolic diseases, but traditional RXR agonists mimicking the natural ligand 9-cis retinoic acid exhibit poor physicochemical properties, pharmacokinetics, and safety profiles. Improved RXR ligands are needed to exploit RXR modulation as a promising therapeutic concept in various indications beyond its current role in second-line cancer treatment. Here, we report the co-crystal structure of RXR in complex with a novel pyrimidine-based ligand and the structure-informed optimization of this scaffold to highly potent and highly soluble RXR agonists. Focused structure-activity relationship elucidation and rigidization resulted in a substantially optimized partial RXR agonist with low nanomolar potency, no cytotoxic activity, and very favorable physicochemical properties highlighting this promising scaffold for the development of next-generation RXR targeting drugs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Receptores X de Retinoides/metabolismo , Ligantes , Regulação da Expressão Gênica
2.
ChemMedChem ; 16(7): 1088-1092, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33283450

RESUMO

Designed multitarget ligands are a popular approach to generating efficient and safe drugs, and fragment-based strategies have been postulated as a versatile avenue to discover multitarget ligand leads. To systematically probe the potential of fragment-based multiple ligand discovery, we have employed a large fragment library for comprehensive screening on five targets chosen from proteins for which multitarget ligands have been successfully developed previously (soluble epoxide hydrolase, leukotriene A4 hydrolase, 5-lipoxygenase, retinoid X receptor, farnesoid X receptor). Differential scanning fluorimetry served as primary screening method before fragments hitting at least two targets were validated in orthogonal assays. Thereby, we obtained valuable fragment leads with dual-target engagement for six out of ten target combinations. Our results demonstrate the applicability of fragment-based approaches to identify starting points for polypharmacological compound development with certain limitations.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Humanos , Estrutura Molecular , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores X de Retinoides/antagonistas & inibidores , Receptores X de Retinoides/metabolismo , Relação Estrutura-Atividade
3.
Int J Mol Sci ; 21(22)2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33187070

RESUMO

The retinoid X receptor (RXR) is a ligand-sensing transcription factor acting mainly as a universal heterodimer partner for other nuclear receptors. Despite presenting as a potential therapeutic target for cancer and neurodegeneration, adverse effects typically observed for RXR agonists, likely due to the lack of isoform selectivity, limit chemotherapeutic application of currently available RXR ligands. The three human RXR isoforms exhibit different expression patterns; however, they share high sequence similarity, presenting a major obstacle toward the development of subtype-selective ligands. Here, we report the discovery of the saturated fatty acid, palmitic acid, as an RXR ligand and disclose a uniform set of crystal structures of all three RXR isoforms in an active conformation induced by palmitic acid. A structural comparison revealed subtle differences among the RXR subtypes. We also observed an ability of palmitic acid as well as myristic acid and stearic acid to induce recruitment of steroid receptor co-activator 1 to the RXR ligand-binding domain with low micromolar potencies. With the high, millimolar endogenous concentrations of these highly abundant lipids, our results suggest their potential involvement in RXR signaling.


Assuntos
Ácido Palmítico/metabolismo , Isoformas de Proteínas/metabolismo , Receptores X de Retinoides/metabolismo , Linhagem Celular , Dimerização , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Ligantes , Ácido Mirístico/metabolismo , Coativador 1 de Receptor Nuclear/metabolismo , Transdução de Sinais/fisiologia , Ácidos Esteáricos/metabolismo
4.
Commun Chem ; 3(1): 174, 2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36703463

RESUMO

Non-alcoholic steatohepatitis (NASH) - a hepatic manifestation of the metabolic syndrome - is a multifactorial disease with alarming global prevalence. It involves steatosis, inflammation and fibrosis in the liver, thus demanding multiple modes of action for robust therapeutic efficacy. Aiming to fuse complementary validated anti-NASH strategies in a single molecule, we have designed and systematically optimized a scaffold for triple activation of farnesoid X receptor (FXR), peroxisome proliferator-activated receptor (PPAR) α and PPARδ. Pilot profiling of the resulting triple modulator demonstrated target engagement in native cellular settings and in mice, rendering it a suitable tool to probe the triple modulator concept in vivo. In DIO NASH in mice, the triple agonist counteracted hepatic inflammation and reversed hepatic fibrosis highlighting the potential of designed polypharmacology in NASH.

5.
ChemMedChem ; 14(14): 1343-1348, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31141287

RESUMO

Automated computational analogue design and scoring can speed up hit-to-lead optimization and appears particularly promising in selective optimization of side-activities (SOSA) where possible analogue diversity is confined. Probing this concept, we employed the cysteinyl leukotriene receptor 1 (CysLT1 R) antagonist cinalukast as lead for which we discovered peroxisome proliferator-activated receptor α (PPARα) modulatory activity. We automatically generated a virtual library of close analogues and classified these roughly 8000 compounds for PPARα agonism and CysLT1 R antagonism using automated affinity scoring and machine learning. A computationally preferred analogue for SOSA was synthesized, and in vitro characterization indeed revealed a marked activity shift toward enhanced PPARα activation and diminished CysLT1 R antagonism. Thereby, this prospective application study highlights the potential of automating SOSA.


Assuntos
PPAR alfa/agonistas , Bibliotecas de Moléculas Pequenas/química , Sítios de Ligação , Humanos , Antagonistas de Leucotrienos/química , Ligantes , Simulação de Acoplamento Molecular , PPAR alfa/química , PPAR alfa/metabolismo , Estudo de Prova de Conceito , Receptores de Leucotrienos/química , Bibliotecas de Moléculas Pequenas/metabolismo , Tiazóis/química
6.
J Med Chem ; 62(4): 2112-2126, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30702885

RESUMO

The fatty acid sensing nuclear receptor families retinoid X receptors (RXRs) and peroxisome proliferator-activated receptors (PPARs) hold therapeutic potential in neurodegeneration. Valuable pleiotropic activities of Wy14,643 in models of such conditions exceed its known PPAR agonistic profile. Here, we characterize the compound as an RXR agonist explaining the pleiotropic effects and report its systematic structure-activity relationship analysis with the discovery of specific molecular determinants driving activity on PPARs and RXRs. We have designed close analogues of the drug comprising selective and dual agonism on RXRs and PPARs that may serve as superior pharmacological tools to study the role and interplay of the nuclear receptors in various pathologies. A systematically optimized high potency RXR agonist revealed activity in vivo and active concentrations in brain. With its lack of RXR/liver X receptor-mediated side effects and superior profile compared to classical rexinoids, it establishes a new class of innovative RXR modulators to overcome key challenges in RXR targeting drug discovery.


Assuntos
Pirimidinas/farmacologia , Receptores X de Retinoides/agonistas , Animais , Células HEK293 , Células Hep G2 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Ratos , Receptores X de Retinoides/metabolismo , Relação Estrutura-Atividade
7.
Sci Rep ; 8(1): 6846, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717168

RESUMO

The bile acid activated transcription factor farnesoid X receptor (FXR) regulates numerous metabolic processes and is a rising target for the treatment of hepatic and metabolic disorders. FXR agonists have revealed efficacy in treating non-alcoholic steatohepatitis (NASH), diabetes and dyslipidemia. Here we characterize imatinib as first-in-class allosteric FXR modulator and report the development of an optimized descendant that markedly promotes agonist induced FXR activation in a reporter gene assay and FXR target gene expression in HepG2 cells. Differential effects of imatinib on agonist-induced bile salt export protein and small heterodimer partner expression suggest that allosteric FXR modulation could open a new avenue to gene-selective FXR modulators.


Assuntos
Mesilato de Imatinib/farmacologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Regulação Alostérica , Ácidos e Sais Biliares/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Mesilato de Imatinib/análogos & derivados , Mesilato de Imatinib/química , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/química , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo
8.
Expert Opin Ther Pat ; 27(4): 517-525, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27967266

RESUMO

INTRODUCTION: WY14643 - also known as pirinixic acid - is a versatile fatty acid mimetic that was originally developed as lipid lowering agent without knowledge of its molecular target. Various later studies discovered somewhat promiscuous activity of the compound on several receptors and enzymes. Pirinixic acid though never having reached clinical use was subjected to many in vivo studies and exerted beneficial effects in a variety of disease models. Areas covered: Inventions claiming the use of WY14643 for numerous indications ranging from the originally intended application in metabolic dysbalances over cancer and inflammation to some rare syndromes have been evaluated. Expert opinion: It is rather unlikely that pirinixic acid will gain relevance in treatment of metabolic diseases for which it was originally developed because more efficient and selective alternatives are available. Instead, several other claimed activities of the compound e.g. in inflammation, neurodegeneration and cancer seem very promising. However, some of the underlying studies are biased and for some effects of pirinixic acid, the molecular target and mode of action remain to be identified.


Assuntos
Anticolesterolemiantes/farmacologia , Terapia de Alvo Molecular , Pirimidinas/farmacologia , Animais , Desenho de Fármacos , Ácidos Graxos/metabolismo , Humanos , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Patentes como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA