Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 81(4): 691-701, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38059359

RESUMO

ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.


Assuntos
Hipertensão Pulmonar , Hipertensão , Insuficiência Renal Crônica , Humanos , Antagonistas dos Receptores de Endotelina/uso terapêutico , Endotelinas , Hipertensão/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Endotelina-1/fisiologia , Receptores de Endotelina , Receptor de Endotelina A
2.
Front Physiol ; 14: 1086973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733911

RESUMO

Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12-16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system.

3.
Can J Physiol Pharmacol ; 100(7): 637-650, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413222

RESUMO

Progressive iron accumulation and renal impairment are prominent in both patients and mouse models of sickle cell disease (SCD). Endothelin A receptor (ETA) antagonism prevents this iron accumulation phenotype and reduces renal iron deposition in the proximal tubules of SCD mice. To better understand the mechanisms of iron metabolism in the kidney and the role of the ETA receptor in iron chelation and transport, we studied renal iron handling in a nonsickle cell iron overload model, heme oxygenase-1 (Hmox-1-/-) knockout mice. We found that Hmox-1-/- mice had elevated plasma endothelin-1 (ET-1), cortical ET-1 mRNA expression, and renal iron content compared with Hmox-1+/+ controls. The ETA receptor antagonist, ambrisentan, attenuated renal iron deposition, without any changes to anemia status in Hmox-1-/- mice. This was accompanied by reduced urinary iron excretion. Finally, ambrisentan had an important iron recycling effect by increasing the expression of the cellular iron exporter, ferroportin-1 (FPN-1), and circulating total iron levels in Hmox-1-/- mice. These findings suggest that the ET-1/ETA signaling pathway contributes to renal iron trafficking in a murine model of iron overload.


Assuntos
Anemia Falciforme , Sobrecarga de Ferro , Anemia Falciforme/complicações , Anemia Falciforme/metabolismo , Animais , Antagonistas do Receptor de Endotelina A/farmacologia , Antagonistas do Receptor de Endotelina A/uso terapêutico , Antagonistas dos Receptores de Endotelina , Endotelina-1/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Ferro/metabolismo , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/metabolismo , Rim/metabolismo , Camundongos , Camundongos Knockout , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo
4.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R297-R306, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33407017

RESUMO

Recent evidence indicates a crucial role for G protein-coupled estrogen receptor 1 (GPER1) in the maintenance of cardiovascular and kidney health in females. The current study tested whether GPER1 activation ameliorates hypertension and kidney damage in female Dahl salt-sensitive (SS) rats fed a high-salt (HS) diet. Adult female rats were implanted with telemetry transmitters for monitoring blood pressure and osmotic minipumps releasing G1 (selective GPER1 agonist, 400 µg/kg/day ip) or vehicle. Two weeks after pump implantation, rats were shifted from a normal-salt (NS) diet (0.4% NaCl) to a matched HS diet (4.0% NaCl) for 2 wk. Twenty-four hour urine samples were collected during both diet periods and urinary markers of kidney injury were assessed. Histological assessment of kidney injury was conducted after the 2-wk HS diet period. Compared with values during the NS diet, 24-h mean arterial pressure markedly increased in response to HS, reaching similar values in vehicle-treated and G1-treated rats. HS also significantly increased urinary excretion of protein, albumin, nephrin (podocyte damage marker), and KIM-1 (proximal tubule injury marker) in vehicle-treated rats. Importantly, G1 treatment prevented the HS-induced proteinuria, albuminuria, and increase in KIM-1 excretion but not nephrinuria. Histological analysis revealed that HS-induced glomerular damage did not differ between groups. However, G1 treatment preserved proximal tubule brush-border integrity in HS-fed rats. Collectively, our data suggest that GPER1 activation protects against HS-induced proteinuria and albuminuria in female Dahl SS rats by preserving proximal tubule brush-border integrity in a blood pressure-independent manner.


Assuntos
Albuminúria/prevenção & controle , Ciclopentanos/farmacologia , Nefropatias/prevenção & controle , Glomérulos Renais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Quinolinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Albuminúria/etiologia , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Pressão Arterial , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Feminino , Hipertensão/etiologia , Hipertensão/fisiopatologia , Nefropatias/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Ratos Endogâmicos Dahl , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Cloreto de Sódio na Dieta
5.
J Pharmacol Exp Ther ; 376(1): 98-105, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127751

RESUMO

The G protein-coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1-dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats. SIGNIFICANCE STATEMENT: Activation of G protein-coupled estrogen receptor 1 (GPER1) in the renal medulla of female rats evokes natriuresis via endothelin receptors A and/or B, suggesting that GPER1 and endothelin signaling pathways help efficient sodium excretion in females. Thus, GPER1 activation could be potentially useful to mitigate salt sensitivity in females.


Assuntos
Natriurese , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Atrasentana/farmacologia , Antagonistas dos Receptores de Endotelina/farmacologia , Feminino , Medula Renal/efeitos dos fármacos , Medula Renal/metabolismo , Pirrolidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/agonistas
6.
Biol Sex Differ ; 11(1): 52, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928299

RESUMO

BACKGROUND: Premenopausal women have a lower risk of hypertension compared to age-matched men and postmenopausal women. P2Y2 and P2Y4 purinoceptor can be considered potential contributors to hypertension due to their emerging roles in regulating renal tubular Na+ transport. Activation of these receptors inhibits epithelial Na+ channel activity (ENaC) via a phospholipase C (PLC)-dependent pathway resulting in natriuresis. We recently reported that activation of P2Y2 and P2Y4 receptors in the renal medulla by UTP promotes natriuresis in male and ovariectomized (OVX) rats, but not in ovary-intact females. This led us to hypothesize that ovary-intact females have greater basal renal medullary activity of P2 (P2Y2 and P2Y4) receptors regulating Na+ excretion compared to male and OVX rats. METHODS: To test our hypothesis, we determined (i) the effect of inhibiting medullary P2 receptors by suramin (750 µg/kg/min) on urinary Na+ excretion in anesthetized male, ovary-intact female, and OVX Sprague Dawley rats, (ii) mRNA expression and protein abundance of P2Y2 and P2Y4 receptors, and (iii) mRNA expression of their downstream effectors (PLC-1δ and ENaCα) in renal inner medullary tissues obtained from these three groups. We also subjected cultured mouse inner medullary collecting duct cells (segment 3, mIMCD3) to different concentrations of 17ß-estradiol (E2, 0, 10, 100, and 1000 nM) to test whether E2 increases mRNA expression of P2Y2 and P2Y4 receptors. RESULTS: Acute P2 inhibition attenuated urinary Na+ excretion in ovary-intact females, but not in male or OVX rats. We found that P2Y2 and P2Y4 mRNA expression was higher in the inner medulla from females compared to males or OVX. Inner medullary lysates showed that ovary-intact females have higher P2Y2 receptor protein abundance, compared to males; however, OVX did not eliminate this sex difference. We also found that E2 dose-dependently upregulated P2Y2 and P2Y4 mRNA expression in mIMCD3. CONCLUSION: These data suggest that ovary-intact females have enhanced P2Y2 and P2Y4-dependent regulation of Na+ handling in the renal medulla, compared to male and OVX rats. We speculate that the P2 pathway contributes to facilitated renal Na+ handling in premenopausal females.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Estradiol/metabolismo , Natriurese/fisiologia , Ovário/fisiologia , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Canais Epiteliais de Sódio/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Medula Renal/fisiologia , Masculino , Ovariectomia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2/genética , Receptores Purinérgicos P2Y2/genética , Fatores Sexuais , Suramina/farmacologia , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
7.
J Am Heart Assoc ; 9(10): e015110, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32390531

RESUMO

Background The novel estrogen receptor, G-protein-coupled estrogen receptor (GPER), is responsible for rapid estrogen signaling. GPER activation elicits cardiovascular and nephroprotective effects against salt-induced complications, yet there is no direct evidence for GPER control of renal Na+ handling. We hypothesized that GPER activation in the renal medulla facilitates Na+ excretion. Methods and Results Herein, we show that infusion of the GPER agonist, G1, to the renal medulla increased Na+ excretion in female Sprague Dawley rats, but not male rats. We found that GPER mRNA expression and protein abundance were markedly higher in outer medullary tissues from females relative to males. Blockade of GPER in the renal medulla attenuated Na+ excretion in females. Given that medullary endothelin 1 is a well-established natriuretic factor that is regulated by sex and sex steroids, we hypothesized that GPER activation promotes natriuresis via an endothelin 1-dependent pathway. To test this mechanism, we determined the effect of medullary infusion of G1 after blockade of endothelin receptors. Dual endothelin receptor subtype A and endothelin receptor subtype B antagonism attenuated G1-induced natriuresis in females. Unlike males, female mice with genetic deletion of GPER had reduced endothelin 1, endothelin receptor subtype A, and endothelin receptor subtype B mRNA expression compared with wild-type controls. More important, we found that systemic GPER activation ameliorates the increase in mean arterial pressure induced by ovariectomy. Conclusions Our data uncover a novel role for renal medullary GPER in promoting Na+ excretion via an endothelin 1-dependent pathway in female rats, but not in males. These results highlight GPER as a potential therapeutic target for salt-sensitive hypertension in postmenopausal women.


Assuntos
Medula Renal/metabolismo , Natriurese , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ciclopentanos/farmacologia , Endotelina-1/genética , Endotelina-1/metabolismo , Estradiol/metabolismo , Estrogênios/farmacologia , Feminino , Medula Renal/efeitos dos fármacos , Masculino , Camundongos Knockout , Natriurese/efeitos dos fármacos , Ovariectomia , Quinolinas/farmacologia , Ratos Sprague-Dawley , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/genética , Receptor de Endotelina B/metabolismo , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Fatores Sexuais , Transdução de Sinais
8.
Am J Hypertens ; 32(10): 968-974, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31112592

RESUMO

BACKGROUND: Ethnic differences in nighttime blood pressure (BP) have long been documented with African Americans (AAs) having higher BP than European Americans (EAs). At present, lower nighttime melatonin, a key regulator of circadian rhythms, has been associated with higher nighttime BP levels in EAs. This study sought to test the hypothesis that AAs have lower nighttime melatonin secretion compared with EAs. We also determined if this ethnic difference in melatonin could partially explain the ethnic difference in nighttime BP. METHODS: A total of 150 young adults (71 AA; 46% females; mean age: 27.7 years) enrolled in the Georgia Stress and Heart study provided an overnight urine sample for the measurement of 6-sulfatoxymelatonin, a major metabolite of melatonin. Urine melatonin excretion (UME) was calculated as the ratio between 6-sulfatoxymelatonin concentration and creatinine concentration. Twenty-four-hour ambulatory BP was assessed and nighttime systolic BP (SBP) was used as a major index of BP regulation. RESULTS: After adjustment of age, sex, body mass index, and smoking, AAs had significantly lower UME (P = 0.002) and higher nighttime SBP than EAs (P = 0.036). Lower UME was significantly associated with higher nighttime SBP and this relationship did not depend on ethnicity. The ethnicity difference in nighttime SBP was significantly attenuated after adding UME into the model (P = 0.163). CONCLUSION: This study is the first to document the ethnic difference in nighttime melatonin excretion, demonstrating that AAs have lower melatonin secretion compared with EAs. Furthermore, the ethnic difference in nighttime melatonin can partially account for the established ethnic difference in nighttime SBP.


Assuntos
Negro ou Afro-Americano , Pressão Sanguínea , Ritmo Circadiano , Disparidades nos Níveis de Saúde , Hipertensão/etnologia , Melatonina/urina , População Branca , Adulto , Biomarcadores/urina , Feminino , Georgia/epidemiologia , Humanos , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Hipertensão/urina , Masculino , Fatores Raciais , Fatores de Risco , Fatores de Tempo
9.
Biol Sex Differ ; 10(1): 1, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30606254

RESUMO

BACKGROUND: The pathogenesis of hypertension is distinct between men and women. Endothelin-1 (ET-1) is a potential contributor to sex differences in the pathophysiology of hypertension. ET-1 participates in blood pressure regulation through activation of endothelin A (ETA) and endothelin B (ETB) receptors including those in the vasculature. Previous studies demonstrated that sex and sex hormones evoke discrepancies in ET-1-mediated control of vascular tone in different vascular beds. However, little is known about sex- and sex hormone-related differences in ET-1-dependent renal microvascular reactivity. Accordingly, we hypothesized that loss of sex hormones impairs afferent arteriole reactivity to ET-1. METHODS: Male and female Sprague Dawley rats were subjected to gonadectomy or sham surgery (n = 6/group). After 3 weeks, kidneys from those rats were prepared for assessment of renal microvascular responses to ET-1 (ETA and ETB agonist, 10-12 to 10-8 M) and sarafotoxin 6c (S6c, ETB agonist, 10-12 to 10-8 M) using the blood-perfused juxtamedullary nephron preparation. RESULTS: Control afferent arteriole diameters at 100 mmHg were similar between sham male and female rats averaging 14.6 ± 0.3 and 15.3 ± 0.3 µm, respectively. Gonadectomy had no significant effect on control arteriole diameter. In sham males, ET-1 produced significant concentration-dependent decreases in afferent arteriole diameter, with 10-8 M ET-1 decreasing diameter by 84 ± 1%. ET-1 induced similar concentration-dependent vasoconstrictor responses in sham female rats, with 10-8 M ET-1 decreasing the diameter by 82 ± 1%. The afferent arteriolar vasoconstrictor responses to ET-1 were unchanged by ovariectomy or orchiectomy. Selective ETB receptor activation by S6c induced a concentration-dependent decline in afferent arteriole diameter, with 10-8 M S6c decreasing diameter by 77 ± 3 and 76 ± 3% in sham male and female rats, respectively. Notably, ovariectomy augmented the vasoconstrictor response to S6c (10-12 to 10-9 M), whereas orchiectomy had no significant impact on the responsiveness to ETB receptor activation. CONCLUSION: These data demonstrate that sex does not significantly influence afferent arteriole reactivity to ET receptor activation. Gonadectomy potentiated the responsiveness of the afferent arteriole to ETB-induced vasoconstriction in females, but not males, suggesting that female sex hormones influence ETB-mediated vasoconstriction in the renal microcirculation.


Assuntos
Arteríolas/efeitos dos fármacos , Endotelina-1/farmacologia , Receptor de Endotelina A/agonistas , Receptor de Endotelina B/agonistas , Animais , Arteríolas/fisiologia , Castração , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Ratos Sprague-Dawley , Receptor de Endotelina A/fisiologia , Receptor de Endotelina B/fisiologia , Caracteres Sexuais , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Venenos de Víboras/farmacologia
10.
Am J Physiol Renal Physiol ; 313(3): F666-F668, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28179257

RESUMO

Alterations in extracellular fluid volume regulation and sodium balance may result in the development and maintenance of salt-dependent hypertension, a major risk factor for cardiovascular disease. Numerous pathways contribute to the regulation of sodium excretion and blood pressure, including endothelin and purinergic signaling. Increasing evidence suggests a link between purinergic receptor activation and endothelin production within the renal collecting duct as a means of promoting natriuresis. A better understanding of the relationship between these two systems, especially in regard to sodium homeostasis, will fill a significant knowledge gap and may provide novel antihypertensive treatment options. Therefore, this review focuses on the cross talk between endothelin and purinergic signaling as it relates to the renal regulation of sodium and blood pressure homeostasis.


Assuntos
Trifosfato de Adenosina/metabolismo , Pressão Sanguínea , Endotelina-1/metabolismo , Túbulos Renais Coletores/metabolismo , Natriurese , Transdução de Sinais , Sódio na Dieta/metabolismo , Animais , Humanos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Túbulos Renais Coletores/fisiopatologia , Receptores de Endotelina/metabolismo , Receptores Purinérgicos P2/metabolismo , Sódio na Dieta/sangue , Sódio na Dieta/urina
11.
Life Sci ; 159: 148-152, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26776836

RESUMO

AIMS: The study aims to determine the modulatory roles of ovarian hormones, estrogen (E2) and progesterone (P), on the expression of endothelin A (ETA) and B (ETB) receptors in lung, liver and kidney tissues. MAIN METHODS: Female Sprague-Dawley rats were subjected to bilateral ovariectomy and divided into four groups ovariectomized (OVX), OVX+E2, OVX+P, and OVX+E2+P. A separate group of rats underwent sham surgery and served as a control. Three weeks after OVX or sham surgery, tissues from lungs, liver, renal cortex, and inner medulla were collected, snap-frozen, and kept at -80°C for assessment of ETA and ETB receptor expression using real-time PCR. KEY FINDINGS: E2-treated OVX animals had significantly lower expression of ETA receptors in the lungs, compared to OVX rats. Pulmonary ETB receptor mRNA was not measurably affected by any of the interventions. Hepatic ETA and ETB were significantly increased in OVX+E2+P rats, compared to sham rats. Renal inner medullary ETA and ETB receptor expressions were significantly elevated in OVX compared to sham, an effect that was prevented by co-supplementation of OVX with E2 and P. Additionally, both ETA and ETB receptor expression in the renal cortex were significantly attenuated by ovariectomy, and this reduction was not evident in OVX+E2 rats. SIGNIFICANCE: These data suggest that ovarian hormones regulate ET receptor expression and may contribute to sex differences in cardiovascular and renal health.


Assuntos
Estrogênios/fisiologia , Ovário/metabolismo , Progesterona/fisiologia , Receptor de Endotelina A/metabolismo , Receptor de Endotelina B/metabolismo , Animais , Feminino , Ovariectomia , Ratos Sprague-Dawley
12.
Curr Opin Nephrol Hypertens ; 25(1): 35-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26625864

RESUMO

PURPOSE OF REVIEW: The role of endothelin-1 (ET-1) in the kidney has been under study for many years; however, the complex mechanisms by which endothelin controls the physiology/pathophysiology of this organ are not fully resolved. This review aims to summarize recent findings in the field, especially regarding glomerular and tubular damage, Na/water homeostasis and sex differences in ET-1 function. RECENT FINDINGS: Podocytes have been recently identified as a target of ET-1 in the glomerular filtration barrier via ETA receptor activation. Activation of the ETA receptor by ET-1 leads to renal tubular damage by promoting endoplasmic reticulum stress and apoptosis in these cells. In addition, high flow rates in the nephron in response to high salt intake induce ET-1 production by the collecting ducts and promote nitric oxide-dependent natriuresis through epithelial sodium channel inhibition. Recent evidence also indicates that sex hormones regulate the renal ET-1 system differently in men and women, with estrogen suppressing renal ET-1 production and testosterone upregulating that production. SUMMARY: Based on the reports reviewed in here, targeting of the renal endothelin system is a possible therapeutic approach against the development of glomerular injury. More animal and clinical studies are needed to better understand the dimorphic control of this system by sex hormones.


Assuntos
Endotelina-1/fisiologia , Rim/fisiologia , Animais , Estresse do Retículo Endoplasmático , Antagonistas dos Receptores de Endotelina/uso terapêutico , Homeostase , Humanos , Nefropatias/etiologia , Podócitos/fisiologia , Caracteres Sexuais , Sódio/metabolismo
13.
Am J Physiol Renal Physiol ; 310(6): F456-65, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26697978

RESUMO

Inflammation contributes to ANG II-associated impairment of renal autoregulation and microvascular P2X1 receptor signaling, but its role in renal autoregulation in mineralocorticoid-induced hypertension is unknown. Autoregulatory behavior was assessed using the blood-perfused juxtamedullary nephron preparation. Hypertension was induced in uninephrectomized control rats (UNx) by subcutaneous implantation of a DOCA pellet plus administration of 1% NaCl in the drinking water (DOCA-salt) for 3 wk. DOCA-salt rats developed hypertension that was unaltered by anti-inflammatory treatment with pentosan polysulfate (DOCA-salt+PPS) but was suppressed with "triple therapy" (hydrochlorothiazide, hydralazine, and reserpine; DOCA-salt+TTx). Baseline arteriolar diameters were similar across all groups. UNx rats exhibited pressure-dependent vasoconstriction with diameters declining to 69 ± 2% of control at 170 mmHg, indicating intact autoregulation. DOCA-salt treatment significantly blunted this pressure-mediated vasoconstriction. Diameters remained between 91 ± 4 and 98 ± 3% of control over 65-170 mmHg, indicating impaired autoregulation. In contrast, pressure-mediated vasoconstriction was preserved in DOCA-salt+PPS and DOCA-salt+TTx rats, reaching 77 ± 7 and 75 ± 3% of control at 170 mmHg, respectively. ATP is required for autoregulation via P2X1 receptor activation. ATP- and ß,γ-methylene ATP (P2X1 receptor agonist)-mediated vasoconstriction were markedly attenuated in DOCA-salt rats compared with UNx (P < 0.05), but significantly improved by PPS or TTx (P < 0.05 vs. DOCA-salt) treatment. Arteriolar responses to adenosine and UTP (P2Y2 receptor agonist) were unaffected by DOCA-salt treatment. PPS and TTx significantly reduced MCP-1 and protein excretion in DOCA-salt rats. These results support the hypothesis that hypertension triggers inflammatory cascades but anti-inflammatory treatment preserves renal autoregulation in DOCA-salt rats, most likely by normalizing renal microvascular reactivity to P2X1 receptor activation.


Assuntos
Anti-Hipertensivos/uso terapêutico , Arteríolas/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Poliéster Sulfúrico de Pentosana/uso terapêutico , Receptores Purinérgicos P2X1/metabolismo , Trifosfato de Adenosina/análogos & derivados , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Hipertensivos/farmacologia , Arteríolas/metabolismo , Pressão Sanguínea , Quimiocina CCL2/urina , Modelos Animais de Doenças , Homeostase/efeitos dos fármacos , Hidralazina/farmacologia , Hidralazina/uso terapêutico , Hidroclorotiazida/farmacologia , Hidroclorotiazida/uso terapêutico , Hipertensão/etiologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Técnicas In Vitro , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Poliéster Sulfúrico de Pentosana/farmacologia , Proteinúria/tratamento farmacológico , Ratos Sprague-Dawley , Reserpina/farmacologia , Reserpina/uso terapêutico , Vasoconstrição
14.
J Pharmacol Exp Ther ; 351(2): 467-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25189702

RESUMO

Experiments determined whether the combination of endothelin A (ETA) receptor antagonist [ABT-627, atrasentan; (2R,3R,4S)-4-(1,3-benzodioxol-5-yl)-1-[2-(dibutylamino)-2-oxoethyl]-2-(4-methoxyphenyl)pyrrolidine-3-carboxylic acid] and a thiazide diuretic (chlorthalidone) would be more effective at lowering blood pressure and reducing renal injury in a rodent model of metabolic syndrome compared with either treatment alone. Male Dahl salt-sensitive rats were fed a high-fat (36% fat), high-salt (4% NaCl) diet for 4 weeks. Separate groups of rats were then treated with vehicle (control), ABT-627 (ABT; 5 mg/kg per day, in drinking water), chlorthalidone (CLTD; 5 mg/kg per day, in drinking water), or both ABT plus CLTD. Mean arterial pressure (MAP) was recorded continuously by telemetry. After 4 weeks, both ABT and CLTD severely attenuated the development of hypertension, whereas the combination further reduced MAP compared with ABT alone. All treatments prevented proteinuria. CLTD and ABT plus CLTD significantly reduced nephrin (a podocyte injury marker) and kidney injury molecule-1 (a tubulointerstitial injury marker) excretion. ABT, with or without CLTD, significantly reduced plasma 8-oxo-2'-deoxyguanosine, a measure of DNA oxidation, whereas CLTD alone had no effect. All treatments suppressed the number of ED1(+) cells (macrophages) in the kidney. Plasma tumor necrosis factor receptors 1 and 2 were reduced only in the combined ABT and CLTD group. These results suggest that ABT and CLTD have antihypertensive and renal-protective effects in a model of metabolic syndrome that are maximally effective when both drugs are administered together. The findings support the hypothesis that combined ETA antagonist and diuretic treatment may provide therapeutic benefit for individuals with metabolic syndrome consuming a Western diet.


Assuntos
Clortalidona/farmacologia , Antagonistas do Receptor de Endotelina A , Endotelinas/antagonistas & inibidores , Síndrome Metabólica/tratamento farmacológico , Pirrolidinas/farmacologia , 8-Hidroxi-2'-Desoxiguanosina , Animais , Anti-Hipertensivos/farmacologia , Pressão Arterial/efeitos dos fármacos , Atrasentana , Moléculas de Adesão Celular/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Modelos Animais de Doenças , Diuréticos/farmacologia , Combinação de Medicamentos , Endotelinas/metabolismo , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Síndrome Metabólica/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteinúria/tratamento farmacológico , Proteinúria/metabolismo , Ratos , Ratos Endogâmicos Dahl , Ratos Sprague-Dawley , Receptor de Endotelina A/metabolismo , Cloreto de Sódio na Dieta/efeitos adversos
15.
Am J Physiol Regul Integr Comp Physiol ; 304(2): R121-9, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23174859

RESUMO

Maternal separation (MatSep) is a model of behavioral stress during early life. We reported that MatSep exacerbates ANG II-induced hypertension in adult male rats. The aims of this study were to determine whether exposure to MatSep in female rats sensitizes blood pressure to ANG II infusion similar to male MatSep rats and to elucidate renal mechanisms involved in the response in MatSep rats. Wistar Kyoto (WKY) pups were exposed to MatSep 3 h/day from days 2 to 14, while control rats remained with their mothers. ANG II-induced mean arterial pressure (MAP; telemetry) was enhanced in female MatSep rats compared with control female rats but delayed compared with male MatSep rats. Creatinine clearance (Ccr) was reduced in male MatSep rats compared with control rats at baseline and after ANG II infusion. ANG II infusion significantly increased T cells in the renal cortex and greater histological damage in the interstitial arteries of male MatSep rats compared with control male rats. Plasma testosterone was greater and estradiol was lower in male MatSep rats compared with control rats with ANG II infusion. ANG II infusion failed to increase blood pressure in orchidectomized male MatSep and control rats. Female MatSep and control rats had similar Ccr, histological renal analysis, and sex hormones at baseline and after ANG II infusion. These data indicate that during ANG II-induced hypertension, MatSep sensitizes the renal phenotype in male but not female rats.


Assuntos
Ansiedade de Separação/complicações , Hipertensão/etiologia , Nefropatias/etiologia , Rim/fisiopatologia , Privação Materna , Estresse Psicológico/complicações , Fatores Etários , Envelhecimento , Angiotensina II , Animais , Ansiedade de Separação/psicologia , Pressão Arterial , Monitorização Ambulatorial da Pressão Arterial/métodos , Creatinina/sangue , Modelos Animais de Doenças , Estradiol/sangue , Feminino , Hipertensão/sangue , Hipertensão/induzido quimicamente , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipertensão/psicologia , Rim/metabolismo , Rim/patologia , Nefropatias/sangue , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/fisiopatologia , Nefropatias/psicologia , Masculino , Orquiectomia , Proteinúria/etiologia , Proteinúria/fisiopatologia , Proteinúria/psicologia , Ratos , Ratos Endogâmicos WKY , Fatores Sexuais , Estresse Psicológico/psicologia , Telemetria , Testosterona/sangue
16.
Am J Physiol Renal Physiol ; 304(6): F801-7, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23269644

RESUMO

Autoregulation is critical for protecting the kidney against arterial pressure elevation and is compromised in some forms of hypertension. Evidence indicates that activated lymphocytes contribute importantly to cardiovascular injury in hypertension. We hypothesized that activated lymphocytes contribute to renal vascular dysfunction by impairing autoregulation and P2X(1) receptor signaling in ANG II-infused hypertensive rats. Male Sprague-Dawley rats receiving ANG II infusion were treated with a lymphocyte proliferation inhibitor, mycophenolate mofetil (MMF) for 2 wk. Autoregulation was assessed in vitro and in vivo using the blood-perfused juxtamedullary nephron preparation and anesthetized rats, respectively. ANG II-treated rats exhibited impaired autoregulation. At the single vessel level, pressure-mediated afferent arteriolar vasoconstriction was significantly blunted (P < 0.05 vs. control rats). At the whole kidney level, renal blood flow passively decreased as renal perfusion pressure was reduced. MMF treatment did not alter the ANG II-induced hypertensive state; however, MMF did preserve autoregulation. The autoregulatory profiles in both in vitro or in vivo settings were similar to the responses from control rats despite persistent hypertension. Autoregulatory responses are linked to P2X(1) receptor activation. Accordingly, afferent arteriolar responses to ATP and the P2X(1) receptor agonist ß,γ-methylene ATP were assessed. ATP- or ß,γ-methylene ATP-induced vasoconstriction was significantly attenuated in ANG II-infused hypertensive rats but was normalized by MMF treatment. Moreover, MMF prevented elevation of plasma transforming growth factor-ß1 concentration and lymphocyte and macrophage infiltration in ANG II-infused kidneys. These results suggest that anti-inflammatory treatment with MMF prevents lymphocyte infiltration and preserves autoregulation in ANG II-infused hypertensive rats, likely by normalizing P2X(1) receptor activation.


Assuntos
Hipertensão/imunologia , Imunossupressores/uso terapêutico , Linfócitos/efeitos dos fármacos , Ácido Micofenólico/análogos & derivados , Receptores Purinérgicos P2X1/metabolismo , Trifosfato de Adenosina/análogos & derivados , Albuminúria/tratamento farmacológico , Angiotensina II , Animais , Arteríolas/efeitos dos fármacos , Homeostase , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Terapia de Imunossupressão , Imunossupressores/farmacologia , Ativação Linfocitária , Macrófagos/efeitos dos fármacos , Masculino , Ácido Micofenólico/farmacologia , Ácido Micofenólico/uso terapêutico , Ratos , Ratos Sprague-Dawley , Circulação Renal/efeitos dos fármacos , Fator de Crescimento Transformador beta1/sangue
17.
Am J Physiol Gastrointest Liver Physiol ; 296(4): G704-8, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19196949

RESUMO

Experimental hepatopulmonary syndrome (HPS) after common bile duct ligation (CBDL) in rat is accompanied by increased lung vascular endothelial endothelin B (ETB) receptor expression and increased circulating levels of endothelin-1 (ET-1). The onset of HPS is hypothesized to be triggered by ET-1/ETB receptor activation of endothelial nitric oxide synthase (eNOS)-derived NO production in the pulmonary endothelium. However, whether functional pulmonary vascular ETB receptors are required for the development of experimental HPS is not defined. We evaluated the effects of vascular ETB receptor deficiency on the development of experimental HPS. The molecular and physiological alterations of HPS were compared in 2-wk CBDL wild-type and ETB receptor-deficient (transgenic sl/sl) rats. Relative to wild-type rats, basal hepatic and plasma ET-1 levels were elevated in sl/sl controls although, unlike wild-type animals circulating ET-1 levels, did not increase further after CBDL in sl/sl animals. In contrast to wild-type animals, ETB receptor-deficient rats did not develop increased Akt and eNOS expression and activation and did not develop gas exchange abnormalities of HPS after CBDL. There was a similar degree of pulmonary intravascular monocyte accumulation in both 2-wk CBDL sl/sl and wild-type animals. In conclusion, ETB receptor deficiency inhibits lung Akt/eNOS activation and prevents the onset of experimental HPS after CBDL. This effect is independent of inhibition of pulmonary intravascular monocyte accumulation. These results demonstrate that ET-1/ETB receptor signaling plays a key role in the initiation of experimental HPS.


Assuntos
Síndrome Hepatopulmonar/genética , Receptor de Endotelina B/genética , Animais , Animais Geneticamente Modificados , Colestase , Endotelina-1/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Predisposição Genética para Doença , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Fígado/irrigação sanguínea , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , Ratos , Ratos Wistar , Receptor de Endotelina B/deficiência , Receptor de Endotelina B/metabolismo
18.
Am J Physiol Renal Physiol ; 295(2): F446-53, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18524861

RESUMO

The inflammatory cytokines IL-1beta and IL-6 have been shown to stimulate production of endothelin-1 (ET-1) by several cell types in vitro, but their effects on renal ET-1 production in vivo are not known. To test whether IL-1beta and IL-6 stimulate renal ET-1 production and release in vivo, urine was collected from male C57BL/6 mice over 24-h periods at baseline and on days 7 and 14 of a 14-day subcutaneous infusion of IL-1beta (10 ng/h), IL-6 (16 ng/h), or vehicle. By day 14, plasma ET-1 was significantly increased by IL-1beta infusion (1.7 +/- 0.1 vs. 0.8 +/- 0.1 pg/ml for vehicle, P < 0.001). Compared with vehicle infusion, IL-1beta infusion induced significant increases in urinary ET-1 excretion rate and urine flow but did not affect conscious mean arterial pressure (telemetry). IL-1beta infusion significantly increased renal cortical and medullary IL-1beta content (ELISA) and prepro-ET-1 mRNA expression (quantitative real-time PCR). In contrast, 14 days of IL-6 infusion had no significant effect on plasma ET-1 or urinary ET-1 excretion rate. To determine whether IL-1beta stimulates ET-1 release via activation of NF-kappaB, inner medullary collecting duct (IMCD-3) cells were incubated for 24 h with IL-1beta, and ET-1 release and NF-kappaB activation were measured (ELISA). IL-1beta activated NF-kappaB and increased ET-1 release in a concentration-dependent manner. The effect of IL-1beta on ET-1 release could be partially inhibited by pretreatment of IMCD-3 cells with an inhibitor of NF-kappaB activation (BAY 11-7082). These results indicate that IL-1beta stimulates renal and systemic ET-1 production in vivo, providing further evidence that ET-1 participates in inflammatory responses.


Assuntos
Endotelina-1/metabolismo , Interleucina-1beta/fisiologia , Interleucina-6/fisiologia , Medula Renal/metabolismo , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Medula Renal/citologia , Medula Renal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Nitrilas/farmacologia , Sulfonas/farmacologia
19.
Am J Physiol Regul Integr Comp Physiol ; 294(1): R76-83, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17989143

RESUMO

Studies suggest that the inflammatory cytokine TNF-alpha plays a role in the prognosis of end-stage renal diseases. We previously showed that TNF-alpha inhibition slowed the progression of hypertension and renal damage in angiotensin II salt-sensitive hypertension. Thus, we hypothesize that TNF-alpha contributes to renal inflammation in a model of mineralocorticoid-induced hypertension. Four groups of rats (n = 5 or 6) were studied for 3 wk with the following treatments: 1) placebo, 2) placebo + TNF-alpha inhibitor etanercept (1.25 mg.kg(-1).day(-1) sc), 3) deoxycorticosterone acetate + 0.9% NaCl to drink (DOCA-salt), or 4) DOCA-salt + etanercept. Mean arterial blood pressure (MAP) measured by telemetry increased in DOCA-salt rats compared with baseline (177 +/- 4 vs. 107 +/- 3 mmHg; P < 0.05), and TNF-alpha inhibition had no effect in the elevation of MAP in these rats (177 +/- 8 mmHg). Urinary protein excretion significantly increased in DOCA-salt rats compared with placebo (703 +/- 76 vs. 198 +/- 5 mg/day); etanercept lowered the proteinuria (514 +/- 64 mg/day; P < 0.05 vs. DOCA-salt alone). Urinary albumin excretion followed a similar pattern in each group. Urinary monocyte chemoattractant protein (MCP)-1 and endothelin (ET)-1 excretion were also increased in DOCA-salt rats compared with placebo (MCP-1: 939 +/- 104 vs. 43 +/- 7 ng/day, ET-1: 3.30 +/- 0.29 vs. 1.07 +/- 0.03 fmol/day; both P < 0.05); TNF-alpha inhibition significantly decreased both MCP-1 and ET-1 excretion (409 +/- 138 ng/day and 2.42 +/- 0.22 fmol/day, respectively; both P < 0.05 vs. DOCA-salt alone). Renal cortical NF-kappaB activity also increased in DOCA-salt hypertensive rats, and etanercept treatment significantly reduced this effect. These data support the hypothesis that TNF-alpha contributes to the increase in renal inflammation in DOCA-salt rats.


Assuntos
Hipertensão/complicações , Nefropatias/etiologia , Nefropatias/prevenção & controle , Fator de Necrose Tumoral alfa/fisiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Quimiocina CCL2/metabolismo , Desoxicorticosterona , Modelos Animais de Doenças , Endotelina-1/metabolismo , Etanercepte , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Imunoglobulina G/farmacologia , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/prevenção & controle , Rim/metabolismo , Nefropatias/metabolismo , Masculino , Mineralocorticoides , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/antagonistas & inibidores
20.
Trends Pharmacol Sci ; 28(11): 573-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17950470

RESUMO

Within five years of discovering endothelin (ET-1) in 1988, the first report of an orally available ET receptor antagonist was published. Within twelve years, bosentan, the first ET receptor antagonist to gain marketing authorization, was made available for the treatment of pulmonary artery hypertension (PAH). Since this milestone in ET biology, several ET receptor antagonists have been developed, principally to target cardiovascular disease states. ET-1 acts through two receptors--ET(A) and ET(B). Currently, the mixed antagonist, bosentan, and the selective ET(A) antagonist, sitaxsentan, are both licensed for the treatment of PAH, and clinical trials with these and other agents are ongoing for many diseases, including scleroderma, diabetic nephropathy and prostate cancer. Although there has been no argument about the importance of blocking ET(A) receptors, there remains a long-running debate as to whether additional ET(B) antagonism is of benefit, and this is the topic of the following review.


Assuntos
Antagonistas do Receptor de Endotelina A , Hipertensão Pulmonar/tratamento farmacológico , Animais , Bosentana , Ensaios Clínicos como Assunto , Antagonistas do Receptor de Endotelina B , Humanos , Hipertensão Pulmonar/metabolismo , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Modelos Biológicos , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Tiofenos/farmacologia , Tiofenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA