Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 5(4): e317-e325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38359857

RESUMO

BACKGROUND: There has been high uptake of rapid antigen test device use for point-of-care COVID-19 diagnosis. Individuals who are symptomatic but test negative on COVID-19 rapid antigen test devices might have a different respiratory viral infection. We aimed to detect and sequence non-SARS-CoV-2 respiratory viruses from rapid antigen test devices, which could assist in the characterisation and surveillance of circulating respiratory viruses in the community. METHODS: We applied archival clinical nose and throat swabs collected between Jan 1, 2015, and Dec 31, 2022, that previously tested positive for a common respiratory virus (adenovirus, influenza, metapneumovirus, parainfluenza, rhinovirus, respiratory syncytial virus [RSV], or seasonal coronavirus; 132 swabs and 140 viral targets) on PCR to two commercially available COVID-19 rapid antigen test devices, the Panbio COVID-19 Ag Rapid Test Device and Roche SARS-CoV-2 Antigen Self-Test. In addition, we collected 31 COVID-19 rapid antigen test devices used to test patients who were symptomatic at The Royal Melbourne Hospital emergency department in Melbourne, Australia. We extracted total nucleic acid from the device paper test strips and assessed viral recovery using multiplex real-time PCR (rtPCR) and capture-based whole genome sequencing. Sequence and genome data were analysed through custom computational pipelines, including subtyping. FINDINGS: Of the 140 respiratory viral targets from archival samples, 89 (64%) and 88 (63%) were positive on rtPCR for the relevant taxa following extraction from Panbio or Roche rapid antigen test devices, respectively. Recovery was variable across taxa: we detected influenza A in nine of 18 samples from Panbio and seven of 18 from Roche devices; parainfluenza in 11 of 20 samples from Panbio and 12 of 20 from Roche devices; human metapneumovirus in 11 of 16 from Panbio and 14 of 16 from Roche devices; seasonal coronavirus in eight of 19 from Panbio and two of 19 from Roche devices; rhinovirus in 24 of 28 from Panbio and 27 of 28 from Roche devices; influenza B in four of 15 in both devices; and RSV in 16 of 18 in both devices. Of the 31 COVID-19 devices collected from The Royal Melbourne Hospital emergency department, 11 tested positive for a respiratory virus on rtPCR, including one device positive for influenza A virus, one positive for RSV, four positive for rhinovirus, and five positive for SARS-CoV-2. Sequences of target respiratory viruses from archival samples were detected in 55 (98·2%) of 56 samples from Panbio and 48 (85·7%) of 56 from Roche rapid antigen test devices. 98 (87·5%) of 112 viral genomes were completely assembled from these data, enabling subtyping for RSV and influenza viruses. All 11 samples collected from the emergency department had viral sequences detected, with near-complete genomes assembled for influenza A and RSV. INTERPRETATION: Non-SARS-CoV-2 respiratory viruses can be detected and sequenced from COVID-19 rapid antigen devices. Recovery of near full-length viral sequences from these devices provides a valuable opportunity to expand genomic surveillance programmes for public health monitoring of circulating respiratory viruses. FUNDING: Australian Government Medical Research Future Fund and Australian National Health and Medical Research Council.


Assuntos
COVID-19 , Influenza Humana , Metapneumovirus , Infecções por Paramyxoviridae , Vírus Sincicial Respiratório Humano , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Teste para COVID-19 , Austrália , Metapneumovirus/genética , Vírus Sincicial Respiratório Humano/genética , Sequenciamento Completo do Genoma
2.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976880

RESUMO

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Microvilosidades/metabolismo , Fosforilação , Fosfotransferases/metabolismo
3.
Methods Mol Biol ; 2291: 317-332, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33704761

RESUMO

Shiga toxin-producing Escherichia coli (STEC) and the related pathogen enteropathogenic Escherichia coli (EPEC) use a type III secretion system to translocate effector proteins into host cells to modulate inflammatory signaling pathways during infection. Here we describe the procedures to investigate effector-driven modulation of host inflammatory signaling pathways in mammalian cells where bacterial effectors are ectopically expressed or in cell lines infected with STEC or EPEC. We focus on the TNF-induced NF-κB response by examining IκBα degradation by immunoblot and p65 nuclear localization in addition to using an NF-κB-dependent luciferase reporter and cytokine secretion assays. These methods can be adapted for examining effector-mediated modulation of other inflammatory stimuli and host signaling pathways.


Assuntos
Escherichia coli Enteropatogênica/metabolismo , Infecções por Escherichia coli/metabolismo , Escherichia coli Shiga Toxigênica/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Animais , Linhagem Celular , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/patologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inibidor de NF-kappaB alfa/metabolismo , Escherichia coli Shiga Toxigênica/patogenicidade
4.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947652

RESUMO

Kingella kingae is a common etiological agent of pediatric osteoarticular infections. While current research has expanded our understanding of K. kingae pathogenesis, there is a paucity of knowledge about host-pathogen interactions and virulence gene regulation. Many host-adapted bacterial pathogens contain phase variable DNA methyltransferases (mod genes), which can control expression of a regulon of genes (phasevarion) through differential methylation of the genome. Here, we identify a phase variable type III mod gene in K. kingae, suggesting that phasevarions operate in this pathogen. Phylogenetic studies revealed that there are two active modK alleles in K. kingae Proteomic analysis of secreted and surface-associated proteins, quantitative PCR, and a heat shock assay comparing the wild-type modK1 ON (i.e., in frame for expression) strain to a modK1 OFF (i.e., out of frame) strain revealed three virulence-associated genes under ModK1 control. These include the K. kingae toxin rtxA and the heat shock genes groEL and dnaK Cytokine expression analysis showed that the interleukin-8 (IL-8), IL-1ß, and tumor necrosis factor responses of THP-1 macrophages were lower in the modK1 ON strain than in the modK1::kan mutant. This suggests that the ModK1 phasevarion influences the host inflammatory response and provides the first evidence of this phase variable epigenetic mechanism of gene regulation in K. kingae.


Assuntos
Metilases de Modificação do DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Kingella kingae/crescimento & desenvolvimento , Metilases de Modificação do DNA/genética , Perfilação da Expressão Gênica , Humanos , Kingella kingae/enzimologia , Kingella kingae/genética , Filogenia , Proteoma/análise , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Regulon , Células THP-1/microbiologia , Virulência , Fatores de Virulência/biossíntese
5.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138023

RESUMO

During infection, enteropathogenic Escherichia coli (EPEC) translocates effector proteins directly into the cytosol of infected enterocytes using a type III secretion system (T3SS). Once inside the host cell, these effector proteins subvert various immune signaling pathways, including death receptor-induced apoptosis. One such effector protein is the non-locus of enterocyte effacement (LEE)-encoded effector NleB1, which inhibits extrinsic apoptotic signaling via the FAS death receptor. NleB1 transfers a single N-acetylglucosamine (GlcNAc) residue to Arg117 in the death domain of Fas-associated protein with death domain (FADD) and inhibits FAS ligand (FasL)-stimulated caspase-8 cleavage. Another effector secreted by the T3SS is NleF. Previous studies have shown that NleF binds to and inhibits the activity of caspase-4, -8, and -9 in vitro Here, we investigated a role for NleF in the inhibition of FAS signaling and apoptosis during EPEC infection. We show that NleF prevents the cleavage of caspase-8, caspase-3, and receptor-interacting serine/threonine protein kinase 1 (RIPK1) in response to FasL stimulation. When translocated into host cells by the T3SS or expressed ectopically, NleF also blocked FasL-induced cell death. Using the EPEC-like mouse pathogen Citrobacter rodentium, we found that NleB but not NleF contributed to colonization of mice in the intestine. Hence, despite their shared ability to block FasL/FAS signaling, NleB and NleF have distinct roles during infection.


Assuntos
Apoptose , Escherichia coli Enteropatogênica/fisiologia , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Fatores de Virulência/metabolismo , Caspases/metabolismo , Linhagem Celular , Expressão Ectópica do Gene , Proteínas de Escherichia coli/genética , Proteína Ligante Fas/metabolismo , Teste de Complementação Genética , Células HEK293 , Células HeLa , Humanos , Mutação , Transdução de Sinais , Fatores de Virulência/genética , Receptor fas/metabolismo
6.
Infect Immun ; 84(5): 1346-1360, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883593

RESUMO

Enteropathogenic Escherichia coli (EPEC) interferes with host cell signaling by injecting virulence effector proteins into enterocytes via a type III secretion system (T3SS). NleB1 is a novel T3SS glycosyltransferase effector from EPEC that transfers a single N-acetylglucosamine (GlcNAc) moiety in an N-glycosidic linkage to Arg(117) of the Fas-associated death domain protein (FADD). GlcNAcylation of FADD prevents the assembly of the canonical death-inducing signaling complex and inhibits Fas ligand (FasL)-induced cell death. Apart from the DXD catalytic motif of NleB1, little is known about other functional sites in the enzyme. In the present study, members of a library of 22 random transposon-based, in-frame, linker insertion mutants of NleB1 were tested for their ability to block caspase-8 activation in response to FasL during EPEC infection. Immunoblot analysis of caspase-8 cleavage showed that 17 mutant derivatives of NleB1, including the catalytic DXD mutant, did not inhibit caspase-8 activation. Regions of interest around the insertion sites with multiple or single amino acid substitutions were examined further. Coimmunoprecipitation studies of 34 site-directed mutants showed that the NleB1 derivatives with the E253A, Y219A, and PILN(63-66)AAAA (in which the PILN motif from residues 63 to 66 was changed to AAAA) mutations bound to but did not GlcNAcylate FADD. A further mutant derivative, the PDG(236-238)AAA mutant, did not bind to or GlcNAcylate FADD. Infection of mice with the EPEC-like mouse pathogen Citrobacter rodentium expressing NleBE253A and NleBY219A showed that these strains were attenuated, indicating the importance of residues E253 and Y219 in NleB1 virulence in vivo In summary, we identified new amino acid residues critical for NleB1 activity and confirmed that these are required for the virulence function of NleB1.


Assuntos
Análise Mutacional de DNA , Escherichia coli Enteropatogênica/enzimologia , Escherichia coli Enteropatogênica/patogenicidade , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Animais , Apoptose , Arginina/metabolismo , Citrobacter rodentium/genética , Citrobacter rodentium/patogenicidade , Elementos de DNA Transponíveis , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/patologia , Proteína Ligante Fas/metabolismo , Proteína de Domínio de Morte Associada a Fas/metabolismo , Feminino , Humanos , Camundongos Endogâmicos C57BL , Mutagênese Insercional , Mutagênese Sítio-Dirigida , Processamento de Proteína Pós-Traducional , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA