Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 15(10): 1409-12, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24850054

RESUMO

DNA strand breaks (SBs) are among the most cytotoxic forms of DNA damage, and their residual levels correlate directly with cell death. Hence, the type and amount of SBs is directly related to the efficacy of a given anticancer therapy. In this study, we describe a molecular tool that can differentiate between single (SSBs) and double (DSBs) strand breaks and also assess them quantitatively. Our method involves PCR amplification of a linear DNA fragment labeled with a sensitizing nucleotide, circularization of that fragment, and enzymatic introduction of supercoils to transform the circular relaxed form of the synthesized plasmid into a supercoiled one. After exposure of the molecule to a damaging factor, SSB and DSB levels can be easily assayed with gel electrophoresis. We applied this method to prepare an artificial plasmid labeled with 5-bromo-2'-deoxyuridine and to assay SBs photoinduced in the synthesized plasmid.


Assuntos
Bromodesoxiuridina/análise , Quebras de DNA , DNA/genética , Plasmídeos/análise , Radiossensibilizantes/análise , DNA/análise , Quebras de DNA/efeitos da radiação , Plasmídeos/genética , Reação em Cadeia da Polimerase
2.
J Phys Chem B ; 116(32): 9676-82, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22812492

RESUMO

The replacement of nucleobases with brominated analogs enhances DNA radiosensitivity. We examine the chemistry of low-energy electrons (LEEs) in this sensitization process by experiments with thin films of the oligonucleotide trimers TBrXT, where BrX = 5-BrU (5-bromouracil), 5-BrC (5-bromocytosine), 8-BrA (8-bromoadenine), or 8-BrG (8-bromoguanine). The products induced from irradiation of thin (∼ 2.5 nm) oligonucleotide films, with 10 eV electrons, under ultrahigh vacuum (UHV) are analyzed by HPLC-UV. The number of damaged brominated trimers ranges from about 12 to 15 × 10(-3) molecules per incident electron, whereas under the identical conditions, these numbers drop to 4-7 × 10(-3) for the same, but nonbrominated oligonucleotides. The results of HPLC analysis show that the main degradation pathway of trinucleotides containing brominated bases involve debromination (i.e., loss of the bromine atom and its replacement with a hydrogen atom). The electron-induced sum of products upon bromination increases by factors of 2.1 for the pyrimidines and 3.2 for the purines. Thus, substitution of any native nucleobase with a brominated one in simple models of DNA increases LEE-induced damage to DNA and hence its radiosensitivity. Furthermore, besides the brominated pyrimidines that have already been tested in clinical trials, brominated purines not only appear to be promising sensitizers for radiotherapy, but could provide a higher degree of radiosensitization.


Assuntos
Dano ao DNA , DNA/química , Elétrons , Oligonucleotídeos/química , Radiossensibilizantes , DNA/efeitos da radiação , Halogenação , Estrutura Molecular , Oligonucleotídeos/efeitos da radiação
3.
BMC Biochem ; 12: 47, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864341

RESUMO

BACKGROUND: Restriction endonucleases are widely applied in recombinant DNA technology. Among them, enzymes of class IIS, which cleave DNA beyond recognition sites, are especially useful. We use BsaI enzyme for the pinpoint introduction of halogen nucleobases into DNA. This has been done for the purpose of anticancer radio- and phototherapy that is our long-term objective. RESULTS: An enzymatic method for synthesizing long double-stranded DNA labeled with the halogen derivatives of nucleobases (Hal-NBs) with 1-bp accuracy has been put forward and successfully tested on three different DNA fragments containing the 5-bromouracil (5-BrU) residue. The protocol assumes enzymatic cleavage of two Polymerase-Chain-Reaction (PCR) fragments containing two recognition sequences for the same or different class IIS restriction endonucleases, where each PCR fragment has a partially complementary cleavage site. These sites are introduced using synthetic DNA primers or are naturally present in the sequence used. The cleavage sites are not compatible, and therefore not susceptible to ligation until they are partially filled with a Hal-NB or original nucleobase, resulting in complementary cohesive end formation. Ligation of these fragments ultimately leads to the required Hal-NB-labeled DNA duplex. With this approach, a synthetic, extremely long DNA fragment can be obtained by means of a multiple assembly reaction (n × maximum PCR product length: n × app. 50 kb). CONCLUSIONS: The long, precisely labeled DNA duplexes obtained behave in very much the same manner as natural DNA and are beyond the range of chemical synthesis. Moreover, the conditions of synthesis closely resemble the natural ones, and all the artifacts accompanying the chemical synthesis of DNA are thus eliminated. The approach proposed seems to be completely general and could be used to label DNA at multiple pre-determined sites and with halogen derivatives of any nucleobase. Access to DNAs labeled with Hal-NBs at specific position is an indispensable condition for the understanding and optimization of DNA photo- and radio-degradation, which are prerequisites for clinical trials of Hal-NBs in anticancer therapy.


Assuntos
Enzimas de Restrição do DNA/metabolismo , DNA/biossíntese , DNA/genética , Halogênios/química , Pareamento de Bases , Sequência de Bases , Bromodesoxiuridina/metabolismo , DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Hibridização de Ácido Nucleico
4.
J Phys Chem B ; 114(50): 16902-7, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21117683

RESUMO

The acetone-sensitized photolysis of 5-bromo-2'-deoxyuridine (5-BrdU) in a water/isopropanol solution with 300 nm photons leads to the formation of 2'-deoxyuridine (dU) and a comparable amount of another photoproduct that has not been reported in the literature so far. The negative and positive mass spectra recorded for this species indicate that they originate from the molecular mass of 286 Da, which corresponds to an adduct of 2'-deoxyuridine and 2-propanol. Quantum chemical calculations carried out at the DFT and TDDFT levels reveal both the structure and the UV spectrum of that adduct. The latter computational characteristic matches well the experimental UV spectrum of the new photoproduct. Our findings indicate that the acetone-sensitized photolysis of 5-BrdU is more complicated than has hitherto been assumed. Nevertheless, since electron transfer is one of the pathways responsible for 5-BrdU decay, acetone-sensitized photolysis of the halogen derivatives of nucleobases could be a convenient tool for studying their radiosensitivity in aqueous solutions.


Assuntos
2-Propanol/química , Acetona/química , Bromodesoxiuridina/química , Modelos Teóricos , Água/química , Espectrometria de Massas , Fotólise , Teoria Quântica , Soluções/química , Espectrofotometria Ultravioleta , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA