Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Biomolecules ; 13(8)2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37627237

RESUMO

Iron is an essential transition metal for its involvement in several crucial biological functions, the most notable being oxygen storage and transport. Due to its high reactivity and potential toxicity, intracellular and extracellular iron levels must be tightly regulated. This is achieved through transport systems that mediate cellular uptake and efflux both at the level of the plasma membrane and on the membranes of lysosomes, endosomes and mitochondria. Among these transport systems, the key players are ferroportin, the only known transporter mediating iron efflux from cells; DMT1, ZIP8 and ZIP14, which on the contrary, mediate iron influx into the cytoplasm, acting on the plasma membrane and on the membranes of lysosomes and endosomes; and mitoferrin, involved in iron transport into the mitochondria for heme synthesis and Fe-S cluster assembly. The focus of this review is to provide an updated view of the physiological role of these membrane proteins and of the pathologies that arise from defects of these transport systems.


Assuntos
Ferro , Proteínas de Membrana , Transporte Biológico , Membrana Celular , Lisossomos
2.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569293

RESUMO

Ferroportin (Fpn), a member of the major facilitator superfamily (MFS) of transporters, is the only known iron exporter found in mammals and plays a crucial role in regulating cellular and systemic iron levels. MFSs take on different conformational states during the transport cycle: inward open, occluded, and outward open. However, the precise molecular mechanism of iron translocation by Fpn remains unclear, with conflicting data proposing different models. In this work, amber codon suppression was employed to introduce dansylalanine (DA), an environment-sensitive fluorescent amino acid, into specific positions of human Fpn (V46, Y54, V161, Y331) predicted to undergo major conformational changes during metal translocation. The results obtained indicate that different mutants exhibit distinct fluorescence spectra depending on the position of the fluorophore within the Fpn structure, suggesting that different local environments can be probed. Cobalt titration experiments revealed fluorescence quenching and blue-shifts of λmax in Y54DA, V161DA, and Y331DA, while V46DA exhibited increased fluorescence and blue-shift of λmax. These observations suggest metal-induced conformational transitions, interpreted in terms of shifts from an outward-open to an occluded conformation. Our study highlights the potential of genetically incorporating DA into Fpn, enabling the investigation of conformational changes using fluorescence spectroscopy. This approach holds great promise for the study of the alternating access mechanism of Fpn and advancing our understanding of the molecular basis of iron transport.


Assuntos
Proteínas de Transporte de Cátions , Ferro , Animais , Humanos , Ferro/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metais/metabolismo , Mamíferos/metabolismo
3.
Molecules ; 28(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37175319

RESUMO

Grape pomaces have a wide and diverse antioxidant phenolics composition. Six Uruguayan red grape pomaces were evaluated in their phenolics composition, antioxidant capacity, and anti-inflammatory properties. Not only radical scavenging methods as DPPH· and ABTS·+ were employed but also ORAC and FRAP analyses were applied to assess the antioxidant potency of the extracts. The antioxidant reactivity of all extracts against hydroxyl radicals was assessed with ESR. The phenol profile of the most bioactive extract was analyzed by HPLC-MS, and a set of 57 structures were determined. To investigate the potential anti-inflammatory activity of the extracts, Nuclear Factor kappa-B (NF-κB) modulation was evaluated in the human colon cancer reporter cell line (HT-29-NF-κB-hrGFP). Our results suggest that Tannat grapes pomaces have higher phenolic content and antioxidant capacity compared to Cabernet Franc. These extracts inhibited TNF-alpha mediated NF-κB activation and IL-8 production when added to reporter cells. A molecular docking study was carried out to rationalize the experimental results allowing us to propose the proactive interaction between the NF-κB, the grape extracts phenols, and their putative anti-inflammatory bioactivity. The present findings show that red grape pomace constitutes a sustainable source of phenolic compounds, which may be valuable for pharmaceutical, cosmetic, and food industry applications.


Assuntos
Vitis , Humanos , Vitis/química , Antioxidantes/química , NF-kappa B , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Fenóis/química , Anti-Inflamatórios/farmacologia
4.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835358

RESUMO

The Carnitine-Acylcarnitine Carrier is a member of the mitochondrial Solute Carrier Family 25 (SLC25), known as SLC25A20, involved in the electroneutral exchange of acylcarnitine and carnitine across the inner mitochondrial membrane. It acts as a master regulator of fatty acids ß-oxidation and is known to be involved in neonatal pathologies and cancer. The transport mechanism, also known as "alternating access", involves a conformational transition in which the binding site is accessible from one side of the membrane or the other. In this study, through a combination of state-of-the-art modelling techniques, molecular dynamics, and molecular docking, the structural dynamics of SLC25A20 and the early substrates recognition step have been analyzed. The results obtained demonstrated a significant asymmetry in the conformational changes leading to the transition from the c- to the m-state, confirming previous observations on other homologous transporters. Moreover, analysis of the MD simulations' trajectories of the apo-protein in the two conformational states allowed for a better understanding of the role of SLC25A20 Asp231His and Ala281Val pathogenic mutations, which are at the basis of Carnitine-Acylcarnitine Translocase Deficiency. Finally, molecular docking coupled to molecular dynamics simulations lend support to the multi-step substrates recognition and translocation mechanism already hypothesized for the ADP/ATP carrier.


Assuntos
Carnitina Aciltransferases , Proteínas de Membrana Transportadoras , Proteínas de Transporte da Membrana Mitocondrial , Humanos , Recém-Nascido , Carnitina Aciltransferases/química , Carnitina Aciltransferases/genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Acoplamento Molecular , Simulação por Computador
5.
Database (Oxford) ; 20222022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35763362

RESUMO

This work presents Fragment Graph DataBase (FGDB), a graph database of ligand fragments extracted and generated from the protein entries available in the Protein Data Bank (PDB). FGDB is meant to support and elicit campaigns of fragment-based drug design, by enabling users to query it in order to construct ad hoc, target-specific libraries. In this regard, the database features more than 17 000 fragments, typically small, highly soluble and chemically stable molecules expressed via their canonical Simplified Molecular Input Line Entry System (SMILES) representation. For these fragments, the database provides information related to their contact frequencies with the amino acids, the ligands they are contained in and the proteins the latter bind to. The graph database can be queried via standard web forms and textual searches by a number of identifiers (SMILES, ligand and protein PDB ids) as well as via graphical queries that can be performed against the graph itself, providing users with an intuitive and effective view upon the underlying biological entities. Further search mechanisms via advanced conjunctive/disjunctive/negated textual queries are also possible, in order to allow scientists to look for specific relationships and export their results for further studies. This work also presents two sample use cases where maternal embryonic leucine zipper kinase and mesotrypsin are used as a target, being proteins of high biomedical relevance for the development of cancer therapies. Database URL: http://biochimica3.bio.uniroma3.it/fragments-web/.


Assuntos
Proteínas , Bases de Dados de Proteínas , Ligantes , Proteínas/química
6.
Biomolecules ; 12(2)2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35204815

RESUMO

Carfilzomib is a last generation proteasome inhibitor (PI) with proven clinical efficacy in the treatment of relapsed/refractory multiple myeloma. This drug is considered to be extremely specific in inhibiting the chymotrypsin-like activity of the 20S proteasome, encoded by the ß5 subunit, overcoming some bortezomib limitations, the first PI approved for multiple myeloma therapy which is however burdened by a significant toxicity profile, due also to its off-target effects. Here, molecular approaches coupled with molecular docking studies have been used to unveil that the Insulin-Degrading Enzyme, a ubiquitous and highly conserved Zn2+ peptidase, often found to associate with proteasome in cell-based models, is targeted by carfilzomib in vitro. The drug behaves as a modulator of IDE activity, displaying an inhibitory effect over 10-fold lower than for the 20S. Notably, the interaction of IDE with the 20S enhances in vitro the inhibitory power of carfilzomib on proteasome, so that the IDE-20S complex is an even better target of carfilzomib than the 20S alone. Furthermore, IDE gene silencing after delivery of antisense oligonucleotides (siRNA) significantly reduced carfilzomib cytotoxicity in rMC1 cells, a validated model of Muller glia, suggesting that, in cells, the inhibitory activity of this drug on cell proliferation is somewhat linked to IDE and, possibly, also to its interaction with proteasome.


Assuntos
Antineoplásicos , Insulisina , Mieloma Múltiplo , Antineoplásicos/farmacologia , Humanos , Insulisina/genética , Insulisina/uso terapêutico , Simulação de Acoplamento Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Oligopeptídeos , Preparações Farmacêuticas , Complexo de Endopeptidases do Proteassoma , Inibidores de Proteassoma/farmacologia
7.
Comput Struct Biotechnol J ; 19: 5600-5612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34849194

RESUMO

In mitochondria, metabolic processes require the trafficking of solutes and organic molecules, such as amino acids. This task is accomplished by the Mitochondrial Carrier Family members (also known as SLC25), among which the SLC25A29 is responsible for the translocation of basic amino acids. In this regard, nitric oxide levels originated by the arginine mitochondrial catabolism have been shown to strongly affect cancer cells' metabolic status. Furthermore, the metabolic disease saccharopinuria has been linked to a mitochondrial dysregulation caused by a toxic intermediate of the lysine catabolism. In both cases, a reduction of the activity of SLC25A29 has been shown to ameliorate these pathological conditions. However, no detailed structural data are available on SLC25A29. In the present work, molecular modelling, docking and dynamics simulations have been employed to analyse the structural determinants of ligands recognition by SLC25A29 in the c-state. Results confirm and reinforce earlier predictions that Asn73, Arg160 and Glu161, and Arg257 represent the ligand contact points I, II, and III, respectively, and that Arg160, Trp204 and Arg257 form a stable interaction, likely critical for ligand binding and translocation. These results are discussed in view of the experimental data available for SLC25A29 and other homologous carriers of the same family.

8.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947891

RESUMO

Members of the major facilitator superfamily of transporters (MFS) play an essential role in many physiological processes such as development, neurotransmission, and signaling. Aberrant functions of MFS proteins are associated with several diseases, including cancer, schizophrenia, epilepsy, amyotrophic lateral sclerosis and Alzheimer's disease. MFS transporters are also involved in multidrug resistance in bacteria and fungi. The structures of most MFS members, especially those of members with significant physiological relevance, are yet to be solved. The lack of structural and functional information impedes our detailed understanding, and thus the pharmacological targeting, of these transporters. To improve our knowledge on the mechanistic principles governing the function of MSF members, molecular dynamics (MD) simulations were performed on the inward-facing and outward-facing crystal structures of the human ferroportin homologue from the Gram-negative bacterium Bdellovibrio bacteriovorus (BdFpn). Several simulations with an excess of iron ions were also performed to explore the relationship between the protein's dynamics and the ligand recognition mechanism. The results reinforce the existence of the alternating-access mechanism already described for other MFS members. In addition, the reorganization of salt bridges, some of which are conserved in several MFS members, appears to be a key molecular event facilitating the conformational change of the transporter.


Assuntos
Proteínas de Bactérias/metabolismo , Bdellovibrio bacteriovorus/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Motivos de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Cristalografia por Raios X , Ferro/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
9.
J Biomol Struct Dyn ; 38(15): 4508-4520, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31631799

RESUMO

Pseudomonas aeruginosa is an opportunistic human pathogen highly relevant from a biomedical viewpoint. It is one of the main causes of infection in hospitalized patients and a major cause of mortality of cystic fibrosis patients. This is also due to its ability to develop resistance to antibiotics by various mechanisms. Therefore, it is urgent and desirable to identify novel targets for the development of new antibacterial drugs against Pseudomonas aeruginosa. In this work this problem was tackled by an in silico approach aimed at providing a reliable structural model and functional annotation for the Pseudomonas aeruginosa periplasmic proteins for which these data are not available yet. A total of 83 protein sequences were analyzed, and the corresponding structural models were built, leading to the identification of 32 periplasmic 'substrate-binding proteins', 14 enzymes and 4 proteins with different functions, including lipids and metals binding. The most interesting cases were found within the 'enzymes' group with the identification of a lipase, which can be regarded as a virulence factor, a protease involved in the assembly of ß-barrel membrane proteins and a l,d-transpeptidase, which could contribute to confer resistance to ß-lactam antibiotics to the bacterium.Communicated by Ramaswamy H. Sarma.


Assuntos
Proteínas Periplásmicas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Simulação por Computador , Humanos , Proteínas Periplásmicas/genética , Fatores de Virulência
10.
Sci Rep ; 9(1): 16379, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704999

RESUMO

Ruxolitinib is a type I JAK inhibitor approved by FDA for targeted therapy of Philadelphia-negative myeloproliferative neoplasms (MPNs), all characterized by mutations activating the JAK2/STAT signaling pathway. Treatment with ruxolitinib improves constitutional symptoms and splenomegaly. However, patients can become resistant to treatment and chronic therapy has only a mild effect on molecular/pathologic remissions. Drugs interaction with plasma proteins, i.e. human serum albumin (HSA), is an important factor affecting the intensity and duration of their pharmacological actions. Here, the ruxolitinib recognition by the fatty acid binding sites (FAs) 1, 6, 7, and 9 of HSA has been investigated from the bioinformatics, biochemical and/or biological viewpoints. Docking simulations indicate that ruxolitinib binds to multiple sites of HSA. Ruxolitinib binds to the FA1 and FA7 sites of HSA with high affinity (Kr = 3.1 µM and 4.6 µM, respectively, at pH 7.3 and 37.0 °C). Moreover, HSA selectively blocks, in a dose dependent manner, the cytotoxic activity of ruxolitinib in JAK2V617F+ cellular models for MPN, in vitro. Furthermore this event is accompanied by changes in the cell cycle, p27Kip1 and cyclin D3 levels, and JAK/STAT signaling. Given the high plasma concentration of HSA, ruxolitinib trapping may be relevant in vivo.


Assuntos
Inibidores Enzimáticos/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Pirazóis/metabolismo , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Linhagem Celular , Biologia Computacional , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Humanos , Técnicas In Vitro , Janus Quinase 2/antagonistas & inibidores , Células K562 , Cinética , Simulação de Acoplamento Molecular , Proteínas Mutantes/antagonistas & inibidores , Mutação de Sentido Incorreto , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Nitrilas , Pirazóis/farmacologia , Pirimidinas , Transdução de Sinais , Termodinâmica
11.
IUBMB Life ; 70(11): 1067-1075, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253038

RESUMO

Rare earth elements play a pivotal role in high-technology devices, are used as contrast agents for magnetic resonance imaging in clinical settings, are explored as drug carriers for tumor photodynamic therapy, and are used as fertilizers. From the biochemical viewpoint, they act not only as antagonists of Ca2+ but have been proposed as alternative to Ca2+ in metallo-enzymes, in particular in Ce3+ -based methanol dehydrogenases (MDHs). Up to now, the analysis of protein sequence databases identified Ce3+ -based MHDs only in Archea and Bacteria. Here, we report evidence that Ce3+ -based MDHs are also present in higher organisms. These enzymes, identified in the parasite Plasmodium yoelii yoelii, in the spider Nephila clavipes, in the Tibetan antelope Pantholops hodgsonii, and in Homo sapiens, are encoded by intronless genes, thus representing a case of multiple, independent lateral gene transfer from Prokaryotes to Eukaryotes. The conservation of residues involved in the Ce3+ coordination, pyrroquinoline quinone cofactor recognition and in the structure stabilization suggests that these enzymes belong to the Ce3+ -dependent MDH family, hitherto considered as exclusive of Prokaryotes. © 2018 IUBMB Life, 70(11):1067-1075, 2018.


Assuntos
Oxirredutases do Álcool/metabolismo , Cálcio/metabolismo , Cério/metabolismo , Eucariotos/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Células Procarióticas/metabolismo , Oxirredutases do Álcool/genética , Sequência de Aminoácidos , Catálise , Metanol/metabolismo , Filogenia , Homologia de Sequência
12.
Artigo em Inglês | MEDLINE | ID: mdl-30201815

RESUMO

The long-term use of antibiotics has led to the emergence of multidrug-resistant bacteria. A promising strategy to combat bacterial infections aims at hampering their adaptability to the host environment without affecting growth. In this context, the intercellular communication system quorum sensing (QS), which controls virulence factor production and biofilm formation in diverse human pathogens, is considered an ideal target. Here, we describe the identification of new inhibitors of the pqs QS system of the human pathogen Pseudomonas aeruginosa by screening a library of 1,600 U.S. Food and Drug Administration-approved drugs. Phenotypic characterization of ad hoc engineered strains and in silico molecular docking demonstrated that the antifungal drugs clotrimazole and miconazole, as well as an antibacterial compound active against Gram-positive pathogens, clofoctol, inhibit the pqs system, probably by targeting the transcriptional regulator PqsR. The most active inhibitor, clofoctol, specifically inhibited the expression of pqs-controlled virulence traits in P. aeruginosa, such as pyocyanin production, swarming motility, biofilm formation, and expression of genes involved in siderophore production. Moreover, clofoctol protected Galleria mellonella larvae from P. aeruginosa infection and inhibited the pqs QS system in P. aeruginosa isolates from cystic fibrosis patients. Notably, clofoctol is already approved for clinical treatment of pulmonary infections caused by Gram-positive bacterial pathogens; hence, this drug has considerable clinical potential as an antivirulence agent for the treatment of P. aeruginosa lung infections.


Assuntos
Antibacterianos/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Fatores de Virulência/antagonistas & inibidores , Virulência/efeitos dos fármacos , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Estados Unidos , United States Food and Drug Administration
13.
J Infect Dis ; 218(9): 1424-1435, 2018 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-29868851

RESUMO

Background: The pathogenic effects of Clostridium difficile are primarily attributable to the production of the large protein toxins (C difficile toxins [Tcd]) A (TcdA) and B (TcdB). These toxins monoglucosylate Rho GTPases in the cytosol of host cells, causing destruction of the actin cytoskeleton with cytotoxic effects. Low human serum albumin (HSA) levels indicate a higher risk of acquiring and developing a severe C difficile infection (CDI) and are associated with recurrent and fatal disease. Methods: We used a combined approach based on docking simulation and biochemical analyses that were performed in vitro on purified proteins and in human epithelial colorectal adenocarcinoma cells (Caco-2), and in vivo on stem cell-derived human intestinal organoids and zebrafish embryos. Results: Our results show that HSA specifically binds via its domain II to TcdA and TcdB and thereby induces their autoproteolytic cleavage at physiological concentrations. This process impairs toxin internalization into the host cells and reduces the toxin-dependent glucosylation of Rho proteins. Conclusions: Our data provide evidence for a specific HSA-dependent self-defense mechanism against C difficile toxins and provide an explanation for the clinical correlation between CDI severity and hypoalbuminemia.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Albumina Sérica Humana/metabolismo , Animais , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Peixe-Zebra/metabolismo
14.
Biometals ; 31(3): 399-414, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29453656

RESUMO

In the last 20 years, several new genes and proteins involved in iron metabolism in eukaryotes, particularly related to pathological states both in animal models and in humans have been identified, and we are now starting to unveil at the molecular level the mechanisms of iron absorption, the regulation of iron transport and the homeostatic balancing processes. In this review, we will briefly outline the general scheme of iron metabolism in humans and then focus our attention on the cellular iron export system formed by the permease ferroportin and the ferroxidase ceruloplasmin. We will finally summarize data on the role of the iron binding protein lactoferrin on the regulation of the ferroportin/ceruloplasmin couple and of other proteins involved in iron homeostasis in inflamed human macrophages.


Assuntos
Proteínas de Transporte de Cátions/genética , Ceruloplasmina/genética , Ferro/metabolismo , Lactoferrina/genética , Animais , Proteínas de Transporte de Cátions/metabolismo , Ceruloplasmina/metabolismo , Homeostase/genética , Humanos , Transporte de Íons/efeitos dos fármacos , Macrófagos/metabolismo , Mamíferos , Oxirredução , Transferrina/genética
15.
J Biomol Struct Dyn ; 36(12): 3155-3171, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28920551

RESUMO

A polyglutamine expansion of the N-terminal region of huntingtin (Htt) causes Huntington's disease, a severe neurodegenerative disorder. Htt huge multidomain structure, the presence of disordered regions, and the lack of sequence homologs of known structure, so far prevented structural studies of Htt, making the study of its structure-function relationships very difficult. In this work, the presence and location of five Htt ordered domains (named from Hunt1 to Hunt5) has been detected and the structure of these domains has been predicted for the first time using a combined threading/ab initio modeling approach. This work has led to the identification of a previously undetected HEAT repeats region in the Hunt3 domain. Furthermore, a putative function has been assigned to four out of the five domains. Hunt1 and Hunt5, displaying structural similarity with the regulatory subunit A of protein phosphatase 2A, are predicted to play a role in regulating the phosphorylation status of cellular proteins. Hunt2 and Hunt3 are predicted to be homologs of two yeast importins and to mediate vescicles transport and protein trafficking. Finally, a comprehensive analysis of the Htt interactome has been carried out and is discussed to provide a global picture of the Htt's structure-function relationships.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Sequências Repetitivas de Aminoácidos/genética , Relação Estrutura-Atividade , Simulação por Computador , Humanos , Proteína Huntingtina/química , Doença de Huntington/patologia , Peptídeos/química , Peptídeos/genética , Domínios Proteicos , Mapas de Interação de Proteínas/genética , Proteína Fosfatase 2/química
16.
Biochem J ; 474(24): 4253-4268, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29138259

RESUMO

Spermine oxidase (SMOX) is a flavin-containing enzyme that oxidizes spermine to produce spermidine, 3-aminopropanaldehyde, and hydrogen peroxide. SMOX has been shown to play key roles in inflammation and carcinogenesis; indeed, it is differentially expressed in several human cancer types. Our previous investigation has revealed that SMOX purified after heterologous expression in Escherichia coli actually consists of monomers, covalent homodimers, and other higher-order forms. All association forms oxidize spermine and, after treatment with dithiothreitol, revert to SMOX monomer. Here, we report a detailed investigation on the thermal denaturation of SMOX and its association forms in native and reducing conditions. By combining spectroscopic methods (circular dichroism, fluorescence) and thermal methods (differential scanning calorimetry), we provide new insights into the structure, the transformation, and the stability of SMOX. While the crystal structure of this protein is not available yet, experimental results are interpreted also on the basis of a novel SMOX structural model, obtained in silico exploiting the recently solved acetylspermine oxidase crystal structure. We conclude that while at least one specific intermolecular disulfide bond links two SMOX molecules to form the homodimer, the thermal denaturation profiles can be justified by the presence of at least one intramolecular disulfide bond, which also plays a critical role in the stabilization of the overall three-dimensional SMOX structure, and in particular of its flavin adenine dinucleotide-containing active site.


Assuntos
Calorimetria/métodos , Domínio Catalítico , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Desnaturação Proteica , Análise Espectral/métodos , Algoritmos , Dissulfetos/química , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Multimerização Proteica , Temperatura , Poliamina Oxidase
17.
J Mol Recognit ; 30(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28707399

RESUMO

In the year 2000, the third member of the globin family was discovered in human and mouse brain and named neuroglobin (Ngb). Neuroglobin overexpression significantly protects both heart and brain from hypoxic/ischemic and oxidative stress-related insults, whereas decreased Ngb levels lead to an exacerbation of tissue injuries. Moreover, Ngb overexpression protects neurons from mitochondrial dysfunctions and neurodegenerative disorders such as Alzheimer disease; however, it facilitates the survival of cancer cells. Neuroglobin, representing a switch point for cell death and survival, has been reported to recognize a number of proteins involved in several metabolic pathways including ionic homeostasis maintenance, energy metabolism, mitochondrial function, and cell signaling. Here, the recognition properties of Ngb are reviewed to highlight its roles in health and disease.


Assuntos
Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Doença , Saúde , Humanos , Modelos Moleculares , Neuroglobina , Ligação Proteica
18.
Eur J Pharm Sci ; 106: 393-403, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28636950

RESUMO

The ubiquitous flavonoid quercetin is broadly recognized for showing diverse biological and health-promoting effects, such as anti-cancer, anti-inflammatory and cytoprotective activities. The therapeutic potential of quercetin and similar compounds for preventing such diverse oxidative stress-related pathologies has been generally attributed to their direct antioxidant properties. Nevertheless, accumulated evidence indicates that quercetin is also able to interact with multiple cellular targets influencing the activity of diverse signaling pathways. Even though there are a number of well-established protein targets such as phosphatidylinositol 3 kinase and xanthine oxidase, there remains a lack of a comprehensive knowledge of the potential mechanisms of action of quercetin and its target space. In the present work we adopted a reverse screening strategy based on ligand similarity (SHAFTS) and target structure (idTarget, LIBRA) resulting in a set of predicted protein target candidates. Furthermore, using this method we corroborated a broad array of previously experimentally tested candidates among the predicted targets, supporting the suitability of this screening approach. Notably, all of the predicted target candidates belonged to two main protein families, protein kinases and poly [ADP-ribose] polymerases. They also included key proteins involved at different points within the same signaling pathways or within interconnected signaling pathways, supporting a pleiotropic, multilevel and potentially synergistic mechanism of action of quercetin. In this context we highlight the value of quercetin's broad target profile for its therapeutic potential in diseases like inflammation, neurodegeneration and cancer.


Assuntos
Quercetina/química , Difosfato de Adenosina/química , Trifosfato de Adenosina/química , Sítios de Ligação , Simulação por Computador , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica
19.
Crit Rev Biochem Mol Biol ; 52(5): 554-582, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28635330

RESUMO

Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as ß-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.


Assuntos
Insulisina/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/patologia , Humanos , Insulisina/fisiologia , Agregação Patológica de Proteínas/enzimologia , Agregação Patológica de Proteínas/patologia , Conformação Proteica
20.
J Mol Recognit ; 30(11)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28608578

RESUMO

Cantharidin, a monoterpene isolated from the insect blister beetle, has long been used as a medicinal agent in the traditional Chinese medicine. Cantharidin inhibits a subgroup of serine/threonine phosphatases, thus inducing cell growth inhibition and cytotoxicity. Cantharidin has anticancer activity in vitro, since it is able of inducing p53-dependent apoptosis and double-strand breakage of DNA in cancer cells. Although the toxicity of cantharidin to the gastrointestinal and urinary tracts prevents its medical use, it is a promising lead compound for chemical modification to develop new anticancer therapeutics. In fact, cantharidin does not cause myelosuppression and displays anticancer activity against cells with a multidrug resistance phenotype. Here, the competitive inhibitory effect of cantharidin on heme-Fe(III) binding to the fatty acid site 1 (FA1) of human serum albumin (HSA) is reported. Docking and molecular dynamics simulations support functional data indicating the preferential binding of cantharidin to the FA1 site of HSA. Present results may be relevant in vivo as HSA could transport cantharidin, which in turn could affect heme-Fe(III) scavenging by HSA.


Assuntos
Ligação Competitiva , Cantaridina/farmacologia , Ácidos Graxos/metabolismo , Heme/metabolismo , Albumina Sérica Humana/metabolismo , Cantaridina/química , Compostos de Dansil/química , Compostos de Dansil/metabolismo , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , Sarcosina/análogos & derivados , Sarcosina/química , Sarcosina/metabolismo , Albumina Sérica Humana/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA