Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 170: 116090, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169187

RESUMO

PURPOSE: The aim of the study was to evaluate the effect of silver nanoparticles hydrocolloids (AgNPs) on human corneal epithelial cells. Epithelial cells form the outermost and the most vulnerable to environmental stimuli layer of the cornea in the eye. Mechanical stress, UV radiation, and pathogens such as bacteria, viruses, and parasites challenge the fragile homeostasis of the eye. To help combat stress, infection, and inflammation wide portfolio of interventions is available. One of the oldest treatments is colloidal silver. Silver nanoparticle suspension in water is known for its anti-bacterial anti-viral and antiprotozoal action. However, AgNPs interact also with host cells, and the character of the interplay between corneal cells and silver seeks investigation. METHODS: The human epithelial corneal cell line (HCE-2) was cultured in vitro, treated with AgNPs, and subjected to UV. The cell's viability, migration, calcium concentration, and expression/protein level of selected proteins were investigated by appropriate methods including cytotoxicity tests, "wound healing" assay, Fluo8/Fura2 AM staining, qRT-PCR, and western blot. RESULTS: Incubation of human corneal cells (HCE-2) with AgNP did not affect cells viability but limited cells migration and resulted in altered calcium homeostasis, decreased the presence of ATP-activated P2X7, P2Y2 receptors, and enhanced the expression of PACAP. Furthermore, AgNPs pretreatment helped restrain some of the deleterious effects of UV irradiation. Interestingly, AgNPs had no impact on the protein level of ACE2, which is important in light of potential SARS-CoV-2 entrance through the cornea. CONCLUSIONS: Silver nanoparticles are safe for corneal epithelial cells in vitro.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Prata/metabolismo , Cálcio/metabolismo , Nanopartículas Metálicas/toxicidade , Receptores Purinérgicos P2Y2/metabolismo , Córnea , Células Epiteliais
2.
Acta Biochim Pol ; 70(1): 1-21, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36367953

RESUMO

Nucleotides are the most common compounds produced constantly by living organisms. They are involved in most cellular processes like the synthesis of other nucleotides and nucleic acids, generation of energy needed for the maintenance of cells, and molecular signaling. In the 70s sir. Geoffrey Burstock discovered a new class of transmembrane proteins - nucleotide receptors responding to nucleotides and their derivatives. For historical reasons, we distinguish two main classes of nucleotide receptors: P1 - which are G protein-coupled adenosine receptors, and P2 - nucleotide receptors that respond to ATP and its derivatives. Additionally, the P2 receptors family can be divided into two subgroups: P2Y - G protein-coupled receptors and P2X cation channel receptors. This paper focuses mainly on the most researched receptor in the nucleotide receptors family - the P2X7 receptor - presenting it in the background of the nucleotide signaling landscape. Almost thirty years of extensive studies on the receptor contributed to understanding protein structure, splicing variants, and mechanism of action in somatic cells. Despite such a wide spectrum of research, the role of the receptor in cancer progression is still undetermined. In many reports, we can find information about the anti-tumorigenic role of this receptor caused by activation of the cell death mechanism after membrane pore formation. These results, however, contradict other studies in which the same receptor is known to promote cancer development through stimulation of proliferation and activation of pro-survival pathways. Ultimately, all this gathered knowledge points to two faces of the receptor in tumor progression. Therefore, we do provide a comprehensive overview of the topic. Finally, we also try to systemize previous and recent literature about the role of this receptor in somatic and cancer cells and provide access to it in the form of a convenient table.


Assuntos
Neoplasias , Nucleotídeos , Nucleotídeos/metabolismo , Nucleotídeos/farmacologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Adenosina/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Trifosfato de Adenosina/metabolismo , Neoplasias/genética
3.
Purinergic Signal ; 18(1): 135-154, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34964926

RESUMO

P2X7 is an ionotropic nucleotide receptor, forming the cation channel upon ATP stimulation. It can also function as a large membrane pore as well as transmit ATP-dependent signal without forming a channel at all. P2X7 activity in somatic cells is well-known, but remains poorly studied in glioma tumors. The current paper presents the comprehensive study of P2X7 activity in C6 and glioma cell line showing the wide range of effects the receptor has on glioma biology. We observed that P2X7 stimulation boosts glioma cell proliferation and increases cell viability. P2X7 activation promoted cell adhesion, mitochondria depolarization, and reactive oxygen species overproduction in C6 cells. P2X7 receptor also influenced glioma tumor growth in vivo via activation of pro-survival signaling pathways and ATP release. Treatment with Brilliant Blue G, a selective P2X7 antagonist, effectively inhibited glioma tumor development; decreased the expression of negative prognostic cancer markers pro-survival and epithelial-mesenchymal transition (EMT)-related proteins; and modulated the immune response toward glioma tumor in vivo. Finally, pathway-specific enrichment analysis of the microarray data from human patients also showed an upregulation of P2X7 receptor in gliomas from grades I to III. The presented results shed more light on the role of P2X7 receptor in the biology of this disease.


Assuntos
Glioma , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Glioma/metabolismo , Humanos , Ratos , Transdução de Sinais
4.
Cells ; 9(7)2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664530

RESUMO

We have previously postulated that unconventional myosin VI (MVI) could be involved in myoblast differentiation. Here, we addressed the mechanism(s) of its involvement using primary myoblast culture derived from the hindlimb muscles of Snell's waltzer mice, the natural MVI knockouts (MVI-KO). We observed that MVI-KO myotubes were formed faster than control heterozygous myoblasts (MVI-WT), with a three-fold increase in the number of myosac-like myotubes with centrally positioned nuclei. There were also changes in the levels of the myogenic transcription factors Pax7, MyoD and myogenin. This was accompanied by changes in the actin cytoskeleton and adhesive structure organization. We observed significant decreases in the levels of proteins involved in focal contact formation, such as talin and focal adhesion kinase (FAK). Interestingly, the levels of proteins involved in intercellular communication, M-cadherin and drebrin, were also affected. Furthermore, time-dependent alterations in the levels of the key proteins for myoblast membrane fusion, myomaker and myomerger, without effect on their cellular localization, were observed. Our data indicate that in the absence of MVI, the mechanisms controlling cytoskeleton organization, as well as myoblast adhesion and fusion, are dysregulated, leading to the formation of aberrant myotubes.


Assuntos
Citoesqueleto/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Fusão Celular , Regulação da Expressão Gênica , Masculino , Fusão de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL
5.
Acta Biochim Pol ; 67(1): 7-14, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32187491

RESUMO

P2X7 is a commonly expressed purinergic receptor, which functions as a cation-permeable channel in the plasma membrane. In certain circumstances, the receptor may also form a large transmembrane pore what results in cell death. P2X7 receptors control numerous physiological and pathological cellular processes and their overexpression is often associated with cancer progression. As nucleotides are important signaling molecules in the central nervous system, P2X7 plays also an important but ambiguous role in glioma biology with contrary observations originating from different glioma models. Therefore, the aim of our research was to investigate P2X7 receptor expression and functions in three human (U-87 MG, U-138 MG, U-251 MG) and one rat (C6) glioma cell lines. Although the receptor mRNA and protein were present in all the studied cells, we found profound differences in their level. We also encountered a problem with one human cell lines authenticity (U-87 MG) and excluded it from most of the experiments. Interestingly, there was no clear dependency between P2X7 receptor level, calcium signal and pore formation ability in the studied glioma lines. In U-138 human cell line, the receptor seemed to be inactive, while in U-251 human and C6 rat cell line its activation resulted in calcium influx and large pore formation. However, the viability of studied cells upon the administration of specific P2X7 agonist - BzATP - was not affected for U-138 and U-251, whereas for C6 cells a stimulatory effect was observed. Our results stress the variability of P2X7 signaling in glioma models and the need for future research which would take into account the complicated landscape of the receptor signaling in the brain.


Assuntos
Glioma/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Sinalização do Cálcio , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Agonistas do Receptor Purinérgico P2X/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptores Purinérgicos P2X7/genética
6.
Adv Exp Med Biol ; 1202: 67-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034709

RESUMO

Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y1 and P2Y12 nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.


Assuntos
Sinalização do Cálcio , Glioma/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Nucleotídeos/metabolismo
7.
Adv Exp Med Biol ; 1202: 109-128, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32034711

RESUMO

This chapter describes signaling pathways, stimulated by the P2Y2 nucleotide receptor (P2Y2R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y2R coupled with G-proteins, in response to ATP or UTP, regulates the level of iphosphatidylinositol-4,5-bisphosphate (PIP2) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y2R. Signaling pathways responsible for this compensation are calcium signaling which regulates MLC kinase activation via calmodulin, and the Rac1/PAK/LIMK cascade. Stimulation of the Rac1 mediated pathway via Go proteins needs additional interaction between αvß5 integrins and P2Y2Rs. Calcium free medium, or growing of the cells in suspension, prevents Gαo activation by P2Y2 receptors. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.


Assuntos
Citoesqueleto/metabolismo , Glioma/metabolismo , Receptores Purinérgicos P2Y2/metabolismo , Transdução de Sinais , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Glioma/patologia , Humanos , Nucleotídeos/metabolismo , Fosforilação
8.
Adv Exp Med Biol ; 1051: 71-89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28639247

RESUMO

In this chapter we try to show a comprehensive image of current knowledge of structure, activity and physiological role of the P2Y1 purinergic receptor. The structure, distribution and changes in the expression of this receptor are summarized, as well as the mechanism of its signaling activity by the intracellular calcium mobilization. We try to show the connection between the components of its G protein activation and cellular or physiological effects, starting from changes in protein phosphorylation patterns and ending with such remote effects as receptor-mediated apoptosis. The special emphasis is put on the role of the P2Y1 receptor in cancer cells and neuronal plasticity. We concentrate on the P2Y1 receptor, it is though impossible to completely abstract from other aspects of nucleotide signaling and cross-talk with other nucleotide receptors is here discussed. Especially, the balance between P2Y1 and P2Y12 receptors, sharing the same ligand but signaling through different pathways, is presented.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Plasticidade Neuronal , Receptores Purinérgicos P2Y1/metabolismo , Animais , Proteínas de Ligação ao GTP/metabolismo , Humanos
9.
Biochim Biophys Acta ; 1863(7 Pt A): 1589-600, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27018747

RESUMO

DOCK7 (dedicator of cytokinesis 7) is a guanidine nucleotide exchange factor (GEF) for Rac1 GTPase that is involved in neuronal polarity and axon generation as well in Schwann cell differentiation and myelination. Recently, we identified DOCK7 as the binding partner of unconventional myosin VI (MVI) in neuronal-lineage PC12 cells and postulated that this interaction could be important in vivo [Majewski et al. (2012) Biochem Cell Biol., 90:565-574]. Herein, we found that MVI-DOCK7 interaction takes also place in other cell lines and demonstrated that MVI cargo domain via its RRL motif binds to DOCK7 C-terminal M2 and DHR2 domains. In MVI knockdown cells, lower Rac1 activity and a decrease of DOCK7 phosphorylation on Tyr1118 were observed, indicating that MVI could contribute to DOCK7 activity. MVI and DOCK7 co-localization was maintained during NGF-stimulated PC12 cell differentiation and observed also in the outgrowths. Also, during differentiation an increase in phosphorylation of DOCK7 as well as of its downstream effector JNK kinase was detected. Interestingly, overexpression of GFP-tagged MVI cargo domain (GFP-GT) impaired protrusion formation indicating that full length protein is important for this process. Moreover, a transient increase in Rac activity observed at 5min of NGF-stimulated differentiation of PC12 cells (overexpressing either GFP or GFP-MVI) was not detected in cells overexpressing the cargo domain. These data indicate that MVI-DOCK7 interaction could have functional implications in the protrusion outgrowth, and full length MVI seems to be important for delivery and maintenance of DOCK7 along the protrusions, and exerting its GEF activity.


Assuntos
Extensões da Superfície Celular/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fator de Crescimento Neural/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Extensões da Superfície Celular/metabolismo , Proteínas Ativadoras de GTPase/genética , Fatores de Troca do Nucleotídeo Guanina , Células HEK293 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Cadeias Pesadas de Miosina/genética , Neurônios/metabolismo , Células PC12 , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Proteínas rac de Ligação ao GTP/metabolismo
10.
PLoS One ; 10(5): e0127475, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978564

RESUMO

CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.


Assuntos
Núcleo Celular/genética , Proliferação de Células/genética , Peptídeos/genética , Sequência de Aminoácidos , Aminoácidos/genética , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células HeLa , Humanos , Mucosa Intestinal/metabolismo , Masculino , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , Espermatócitos/metabolismo
11.
Postepy Biochem ; 60(4): 438-46, 2014.
Artigo em Polonês | MEDLINE | ID: mdl-25807823

RESUMO

The ability to active motility is one of the fundamental features of both normal and pathologically transformed cells. The current paper de- scribes the role of nucleotide receptors in regulation of cell motility in higher organisms. Author focuses on those cells which actively move in the nucleotide gradients: immune system cells as well as glia cells. The impact of individual receptors in motility and current opinions on the role of signaling pathways activated by those receptors will be described. The source of nucleotides regulating motility will be proposed and role of extracellular nucleotides such as ATP, ADP, UTP and adenosine will be indicated. The role of ectoenzymes in creation of secondary nucleotide gradients regulating cell motility will also be indicated. Finally, the role of nucleotides in regulation of brain tumor cells will be described and perspective of possible therapeutic role of modulation nucleotide signaling influencing cell motility will be suggested.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Movimento Celular/fisiologia , Transdução de Sinais/fisiologia , Uridina Trifosfato/metabolismo , Animais , Neoplasias Encefálicas/fisiopatologia , Transformação Celular Neoplásica/metabolismo , Matriz Extracelular/metabolismo , Granulócitos/imunologia , Humanos , Microglia/imunologia , Microglia/metabolismo , Neuroglia/imunologia , Neuroglia/metabolismo
12.
Adv Exp Med Biol ; 986: 61-79, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22879064

RESUMO

Calcium signaling is probably one of the evolutionary oldest and the most common way by which the signal can be transmitted from the cell environment to the cytoplasmic calcium binding effectors. Calcium signal is fast and due to diversity of calcium binding proteins it may have a very broad effect on cell behavior. Being a crucial player in neuronal transmission it is also very important for glia physiology. It is responsible for the cross-talk between neurons and astrocytes, for microglia activation and motility. Changes in calcium signaling are also crucial for the behavior of transformed glioma cells. The present Chapter summarizes molecular mechanisms of calcium signal formation present in glial cells with a strong emphasis on extracellular nucleotide-evoked signaling pathways. Some aspects of glioma C6 signaling such as the cross-talk between P2Y(1) and P2Y(12) nucleotide receptors in calcium signal generation will be discussed in-depth, to show complexity of machinery engaged in formation of this signal. Moreover, possible mechanisms of modulation of the calcium signal in diverse environments there will be presented herein. Finally, the possible role of calcium signal in glioma motility is also discussed. This is a very important issue, since glioma cells, contrary to the vast majority of neoplastic cells, cannot spread in the body with the bloodstream and, at least in early stages of tumor development, may expand only by means of sheer motility.


Assuntos
Neoplasias Encefálicas/metabolismo , Sinalização do Cálcio , Glioma/metabolismo , Nucleotídeos/metabolismo , Receptores Purinérgicos P2Y/fisiologia , Animais , Linhagem Celular Tumoral , Humanos
13.
Adv Exp Med Biol ; 986: 103-19, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22879066

RESUMO

This chapter describes signaling pathways stimulated by the P2Y(2) nucleotide receptor (P2Y(2)R), that regulate cellular processes dependent on actin cytoskeleton dynamics in glioma C6 cells. P2Y(2)R coupled with G-proteins, in response to ATP or UTP, regulates the level of phosphatidylinositol-4,5-bisphosphate (PIP(2)) which modulates a variety of actin binding proteins and is involved in calcium response and activates Rac1 and RhoA proteins. The RhoA/ROCK signaling pathway plays an important role in contractile force generation needed for the assembly of stress fibers, focal adhesions and for tail retraction during cell migration. Blocking of this pathway by a specific Rho-kinase inhibitor induces changes in F-actin organization and cell shape and decreases the level of phosphorylated myosin II and cofilin. In glioma C6 cells these changes are reversed after UTP stimulation of P2Y(2)R. Signaling pathways responsible for this compensation are connected with calcium signaling. Stimulation of the Rac1 mediated pathway via G(o) proteins needs additional interaction between α(v)ß(5) integrins and P2Y(2)Rs. Rac1 activation is necessary for cofilin phosphorylation as well as integrin activation needed for focal complexes formation and stabilization of lamellipodium. Inhibition of positive Rac1 regulation prevents glioma C6 cells from recovery of control cell like morphology.


Assuntos
Neoplasias Encefálicas/metabolismo , Citoesqueleto/metabolismo , Glioma/metabolismo , Nucleotídeos/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Humanos
14.
Acta Biochim Pol ; 59(4): 711-7, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23256092

RESUMO

In our earlier studies of the signaling cross-talk between nucleotide receptors in an in vitro glioma model (C6 cell line) under prolonged serum deprivation conditions, a growth arrest of the cells and expression shift from P2Y(1) to P2Y(12) receptors was found. The aim of the present work was to test if siRNA silencing of P2Y(1) receptor changes P2Y(12) expression similarly as following the serum deprivation and which physiological downstream pathways it affects. Here we demonstrate for the first time the efficiency of siRNA technology in silencing P2Y nucleotide receptors in glioma C6 cell line. Moreover, P2Y(12) proved to be insensitive to the P2Y(1) receptor silencing. The effect of the P2Y(1) silencing on calcium signaling was less pronounced then the extent of the protein change itself, exactly as was the case for the serum starvation experiments. Phosphorylation of ERK and Akt kinases were studied as the downstream effect of P2Y(1)-evoked signaling and similar effects as in the case of serum deprivation were found for ERK, and even stronger ones for Akt phosphorylation.


Assuntos
Neoplasias Encefálicas , Glioma , Receptores Purinérgicos P2Y12 , Receptores Purinérgicos P2Y1 , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sinalização do Cálcio/genética , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/metabolismo , Glioma/patologia , Humanos , Proteínas de Membrana/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosforilação , Ratos , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo , Transdução de Sinais
15.
Acta Biochim Pol ; 58(1): 125-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21383998

RESUMO

Inhibition of Rho-associated protein kinase (ROCK) activity in glioma C6 cells induces changes in actin cytoskeleton organization and cell morphology similar to those observed in other types of cells with inhibited RhoA/ROCK signaling pathway. We show that phosphorylation of myosin light chains (MLC) induced by P2Y2 receptor stimulation in cells with blocked ROCK correlates in time with actin cytoskeleton reorganization, F-actin redistribution and stress fibers assembly followed by recovery of normal cell morphology. Presented results indicate that myosin light-chain kinase (MLCK) is responsible for the observed phosphorylation of MLC. We also found that the changes induced by P2Y2 stimulation in actin cytoskeleton dynamics and morphology of cells with inhibited ROCK, but not in the level of phosphorylated MLC, depend on the presence of calcium in the cell environment.


Assuntos
Quinases Associadas a rho/metabolismo , Actinas/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Imunofluorescência , Cadeias Leves de Miosina/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Receptores Purinérgicos P2Y2/metabolismo , Uridina Trifosfato/farmacologia
16.
Biochim Biophys Acta ; 1793(6): 1050-7, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19111578

RESUMO

Mutations in presenilin 1 (PS1), which are the major cause of familial Alzheimer's disease (FAD), are involved in perturbations of cellular Ca2+ homeostasis. Attenuation of capacitative Ca2+ entry (CCE) is the most often observed alteration of Ca2+ homeostasis in cells bearing FAD PS1 mutations. However, molecular mechanisms underlying this CCE impairment remains elusive. We demonstrate that cellular levels of STIM1 and STIM2 proteins, which are key players in CCE, depend on presenilins. We found increased level of STIM1 and decreased level of STIM2 proteins in mouse embryonic fibroblasts lacking presenilins. Fura-2 ratiometric assays revealed that CCE is enhanced in these cells after Ca2+ stores depletion by thapsigargin treatment. In turn, overexpression of PS1 with FAD mutations in HEK293 cells led to an attenuation of CCE. Although, no changes in STIM protein levels were observed in these HEK293 cells, FAD mutations in endogenous PS1 in human B lymphocytes resulted in a decreased expression of STIM2 in parallel to an attenuation of CCE. Our experiments showing that knock-out of presenilins in MEF cells and FAD mutations in endogenous PS1 in lymphocytes affect both CCE and the cellular level of STIM proteins open new perspectives for studies on CCE in FAD.


Assuntos
Doença de Alzheimer/metabolismo , Moléculas de Adesão Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Idoso , Doença de Alzheimer/genética , Animais , Linfócitos B/citologia , Linfócitos B/metabolismo , Canais de Cálcio , Moléculas de Adesão Celular/genética , Células Cultivadas , Humanos , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/genética , Presenilina-1/genética , Presenilina-2/genética , Molécula 1 de Interação Estromal , Molécula 2 de Interação Estromal
17.
Eur J Pharmacol ; 594(1-3): 49-54, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18638471

RESUMO

In this study, we demonstrated the presence and the activity of the P2Y14 receptor in glioma C6 cells. We found that P2Y14 could exist in two forms, highly predominating glycosylated and non-glycosylated. Binding of UDP-glucose evoked two responses: calcium signal and adenylate cyclase inhibition, both pertussis toxin-sensitive. Separate glycosylation pattern and functional profile of these two receptor forms were observed in non-starved and serum-starved cells. During long-term serum deprivation (96 h), the level of glycosylated form strongly decreased, while non-glycosylated increased, what was correlated with the decrease of calcium signaling activity and stronger adenylate cyclase inhibition, suggesting that receptor N-glycosylation may modulate its functional activity.


Assuntos
Glioma/metabolismo , Receptores Purinérgicos P2/metabolismo , Adenilil Ciclases/metabolismo , Animais , Western Blotting , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Meios de Cultura Livres de Soro , AMP Cíclico/metabolismo , Glioma/enzimologia , Glucose/metabolismo , Glicosilação , Ratos , Receptores Purinérgicos P2Y , Difosfato de Uridina/metabolismo
18.
FEBS J ; 274(8): 1970-82, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17355284

RESUMO

We characterized the expression and functional properties of the ADP-sensitive P2Y(1) and P2Y(12) nucleotide receptors in glioma C6 cells cultured in medium devoid of serum for up to 96 h. During this long-term serum starvation, cell morphology changed from fibroblast-like flat to round, the adhesion pattern changed, cell-cycle arrest was induced, extracellular signal-regulated kinase (ERK1/2) phosphorylation was reduced, Akt phosphorylation was enhanced, and expression of the P2Y(12) receptor relative to P2Y(1) was increased. These processes did not reflect differentiation into astrocytes or oligodendrocytes, as expression of glial fibrillary acidic protein and NG2 proteoglycan (standard markers of glial cell differentiation) was not increased during the serum deprivation. Transfer of the cells into fresh medium containing 10% fetal bovine serum reversed the changes. This demonstrates that serum starvation caused only temporary growth arrest of the glioma C6 cells, which were ready for rapid division as soon as the environment became more favorable. In cells starved for 72 and 96 h, expression of the P2Y(1) receptor was low, and the P2Y(12) receptor was the major player, responsible for ADP-evoked signal transduction. The P2Y(12) receptor activated ERK1/2 kinase phosphorylation (a known cell proliferation regulator) and stimulated Akt activity. These effects were reduced by AR-C69931MX, a specific antagonist of the P2Y(12) receptor. On the other hand, Akt phosphorylation increased in parallel with the low expression of the P2Y(1) receptor, indicating the inhibitory role of P2Y(1) in Akt pathway signaling. The shift in nucleotide receptor expression from P2Y(1) to P2Y(12) would appear to be a new and important self-regulating mechanism that promotes cell growth rather than differentiation and is a defense mechanism against effects of serum deprivation.


Assuntos
Glioma/química , Proteínas de Membrana/análise , Receptores Purinérgicos P2/análise , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Proteína Glial Fibrilar Ácida/análise , Proteínas de Membrana/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Receptores Purinérgicos P2/fisiologia , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12
19.
Brain Res Bull ; 71(6): 587-92, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17292801

RESUMO

We have previously shown that P2Y1, P2Y2 and P2Y12 nucleotide receptors are functionally expressed and active on the cell surface of rat glioma C6 cells. In the present study, we have immunocytochemically shown their sub-cellular colocalization with mitochondria in these cells. The same colocalization of above receptors has been found in rat astrocytes. Additionally, differences in intracellular distribution of examined receptors between both cell lines have been observed. This data indicates that P2Y1, P2Y2 and P2Y12 receptor proteins exist within mitochondria of astrocytes and C6 cells, although their role in these sub-cellular structures remains unclear.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Sistema Nervoso Central/metabolismo , Glioma/metabolismo , Mitocôndrias/metabolismo , Receptores Purinérgicos/metabolismo , Animais , Astrócitos/ultraestrutura , Linhagem Celular Tumoral , Sistema Nervoso Central/citologia , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Mitocôndrias/ultraestrutura , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y1 , Receptores Purinérgicos P2Y12 , Receptores Purinérgicos P2Y2
20.
Purinergic Signal ; 3(3): 221-30, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18404435

RESUMO

The current work presents results of experiments on the calcium response evoked by the stimulation by extracellular nucleotides occurring in control, nonstarved glioma C6 cells and in cells after long-term (96 h) serum starvation. Three nucleotide receptors were studied: P2Y(1), P2Y(2) and P2Y(12). Two of them, P2Y(1) and P2Y(2), directly stimulate calcium response. The protein level of the P2Y(2) receptor did not change during the serum starvation, while P2Y(1) protein level fell dramatically. Observed changes in the calcium response generated by P2Y(1) are directly correlated with the receptor protein level as well as with the amount of calcium present in the intracellular calcium stores, partially depleted during starvation process. The third receptor, P2Y(12), did not directly evoke calcium response, however it is activated by the same ligand as P2Y(1). The experiments with AR-C69941MX, the P2Y(12)-specific antagonist, indicated that in control and serum-starved cells, calcium response evoked by P2Y(1) receptor is potentiated by the activity of P2Y(12)-dependent signaling pathways. This potentiation may be mediated by P2Y(12) inhibitory effect on the plasma membrane calcium pump. The calcium influx enhanced by the cooperation of P2Y(1) and P2Y(12) receptor activity directly depends on the capacitative calcium entrance mechanism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA