Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(13)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37443747

RESUMO

(1) Background: Tuberous sclerosis complex (TSC) mutations directly affect mTORC activity and, as a result, protein synthesis. In several cancer types, TSC mutation is part of the driver mutation panel. TSC mutations have been associated with mitochondrial dysfunction, tolerance to reactive oxygen species due to increased thioredoxin reductase (TrxR) enzyme activity, tolerance to endoplasmic reticulum (ER) stress, and apoptosis. The FDA-approved drug rapamycin is frequently used in clinical applications to inhibit protein synthesis in cancers. Recently, TrxR inhibitor auranofin has also been involved in clinical trials to investigate the anticancer efficacy of the combination treatment with rapamycin. We aimed to investigate the molecular background of the efficacy of such drug combinations in treating neoplasia modulated by TSC mutations. (2) Methods: TSC2 mutant and TSC2 wild-type (WT) cell lines were exposed to rapamycin and auranofin in either mono- or combination treatment. Mitochondrial membrane potential, TrxR enzyme activity, stress protein array, mRNA and protein levels were investigated via cell proliferation assay, electron microscopy, etc. (3) Results: Auranofin and rapamycin normalized mitochondrial membrane potential and reduced proliferation capacity of TSC2 mutant cells. Database analysis identified peroxiredoxin 5 (Prdx5) as the joint target of auranofin and rapamycin. The auranofin and the combination of the two drugs reduced Prdx5 levels. The combination treatment increased the expression of heat shock protein 70, a cellular ER stress marker. (4) Conclusions: After extensive analyses, Prdx5 was identified as a shared target of the two drugs. The decreased Prdx5 protein level and the inhibition of both TrxR and mTOR by rapamycin and auranofin in the combination treatment made ER stress-induced cell death possible in TSC2 mutant cells.


Assuntos
Esclerose Tuberosa , Proteínas Supressoras de Tumor , Humanos , Proteínas Supressoras de Tumor/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa , Esclerose Tuberosa/tratamento farmacológico , Esclerose Tuberosa/genética , Esclerose Tuberosa/metabolismo , Auranofina/farmacologia , Sirolimo/farmacologia , Antioxidantes/uso terapêutico , Tiorredoxina Dissulfeto Redutase/genética , Mutação/genética
2.
Front Physiol ; 12: 658218, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408656

RESUMO

Exercise initiates systemic adaptation to promote health and prevent various lifestyle-related chronic diseases. Emerging evidence suggests that circulating exosomes mediate some of the beneficial effects of exercise via the transfer of microRNAs between tissues. Yet to date, a comprehensive profile of the exosomal miRNA (exomiR) content released following short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise is still lacking. However, a better understanding of these miRNA species would assist in clarifying the role of regular exercise at the molecular level in the prevention of chronic diseases. In the present pilot studies we analyzed serum exomiR expression in healthy young, sedentary participants (n = 14; age: 23 ± 2 years) at baseline and following a half year-long moderate-intensity regular exercise training. We also analyzed serum exomiR expression in older, healthy trained participants (seniors, n = 11; age: 62 ± 6 years) who engaged in endurance activities for at least 25 years. Following the isolation and enrichment of serum exosomes using Total Exosome Isolation Reagent (TEI) their exomiR levels were determined using the amplification-free Nanostring platform. Hierarchical cluster analysis revealed that the majority of exomiRs overlap for short-term (0.5 year in this study) and long-term (25 + years in this study) regular bouts of exercise. The top 12 significantly altered exomiRs (let-7a-5p; let-7g-5p; miR-130a-3p; miR-142-3p; miR-150-5p; miR-15a-5p; miR-15b-5p; miR-199a-3p; miR-199b-3p; miR-223-3p; miR-23a-3p, and miR-451a-3p) were used for further evaluation. According to KEGG pathway analysis a large portion of the exomiRs target chronic diseases including cancer, neurodegenerative and metabolic diseases, and viral infections. Our results provide evidence that exosomal miRNA modulation is the molecular mechanism through which regular exercise prevents various chronic diseases. The possibility of using such exomiRs to target diseases is of great interest. While further validation is needed, our comprehensive exomiR study presents, for the first time, the disease-preventive molecular pattern of both short and long-term regular exercise.

3.
Front Oncol ; 11: 644592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178631

RESUMO

BACKGROUND: Mutation in a tuberous sclerosis gene (TSC1 or 2) leads to continuous activation of the mammalian target of rapamycin (mTOR). mTOR activation alters cellular including vitamin A metabolism and retinoic acid receptor beta (RARß) expression. The goal of the present study was to investigate the molecular connection between vitamin A metabolism and TSC mutation. We also aimed to investigate the effect of the FDA approved drug rapamycin and the vitamin A metabolite retinoic acid (RA) in cell lines with TSC mutation. METHODS: Expression and activity of vitamin A associated metabolic enzymes and RARß were assessed in human kidney angiomyolipoma derived cell lines, primary lymphangioleiomyomatosis (LAM) tissue derived LAM cell lines. RARß protein levels were also tested in primary LAM lung tissue sections. TaqMan arrays, enzyme activities, qRT-PCRs, immunohistochemistry, immunofluorescent staining, and western blotting were performed and analysed. The functional effects of retinoic acid (RA) and rapamycin were tested in a scratch and a BrDU assay to assess cell migration and proliferation. RESULTS: Metabolic enzyme arrays revealed a general deregulation of many enzymes involved in vitamin A metabolism including aldehyde dehydrogenases (ALDHs), alcohol dehydrogenases (ADHs) and Cytochrome P450 2E1 (CYP2E1). Furthermore, RARß downregulation was a characteristic feature of all TSC-deficient cell lines and primary tissues. Combination of the two FDA approved drugs -RA for acute myeloid leukaemia and rapamycin for TSC mutation- normalised ALDH and ADH expression and activity, restored RARß expression and reduced cellular proliferation and migration. CONCLUSION: Deregulation of vitamin A metabolizing enzymes is a feature of TSC mutation. RA can normalize RARß levels and limit cell migration but does not have a significant effect on proliferation. Based on our data, translational studies could confirm whether combination of RA with reduced dosage of rapamycin would have more beneficial effects to higher dosage of rapamycin monotherapy meanwhile reducing adverse effects of rapamycin for patients with TSC mutation.

4.
Apoptosis ; 26(5-6): 253-260, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33860865

RESUMO

Tuberous sclerosis, angiomyolipoma and lymphangioleiomyomatosis are a group of diseases characterized by mutation in tuberous sclerosis genes (TSC 1-2). TSC mutation leads to continuous activation of the mTOR pathway that requires adaptation to increased ATP requirement. With limited treatment options, there is an increasing demand to identify novel therapeutic targets and to understand the correlations between mTOR pathway activation and the lack of cell death in the presence of TSC mutation. In the current study, we demonstrate deregulation of p53 controlled and mitochondria associated cell death processes. The study also reveals that treatment of TSC mutant cells with the drug candidate Proxison combined with reduced concentration of rapamycin can increase production of reactive oxygen species (ROS), can modify miRNA expression pattern associated with p53 regulation and can reduce cell viability.


Assuntos
Apoptose/genética , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Células Cultivadas , Flavonoides/farmacologia , Humanos , MicroRNAs/genética , Mitocôndrias/metabolismo , Mutação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Proteína Supressora de Tumor p53/genética
5.
Pathophysiology ; 28(1): 34-49, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35366268

RESUMO

In spite of intensive research, the survival rates of patients diagnosed with tumors of the central nervous system (CNS) have not improved significantly in the last decade. Immunotherapy as novel and efficacious treatment option in several other malignancies has failed in neuro-oncology likely due to the immunosuppressive property of the brain tissues. Glioblastoma (GBM) is the most aggressive malignant CNS neoplasm, while meningioma (MNG) is a mainly low grade or benign brain tumor originating from the non-glial tissues of the CNS. The aim of the current preliminary study is to compare the immune microenvironment of MNG and GBM as potential target in immunotherapy. Interestingly, the immune microenvironment of MNG and GBM have proved to be similar. In both tumors types the immune suppressive elements including regulatory T cells (Treg), tumor-associated macrophages (TAM) were highly elevated. The cytokine environment supporting Treg differentiation and the presence of indoleamine 2,3-dioxygenase 1 (IDO1) have also increased the immunosuppressive microenvironment. The results of the present study show an immune suppressive microenvironment in both brain tumor types. In a follow-up study with a larger patient cohort can provide detailed background information on the immune status of individual patients and aid selection of the best immune checkpoint inhibitor or other immune modulatory therapy. Immune modulatory treatments in combination with IDO1 inhibitors might even become alternative therapy for relapsed, multiple and/or malignant MNG or chemo-resistant GBM.

6.
BMJ Open Respir Res ; 7(1)2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32527872

RESUMO

Background Despite improved screening techniques, diagnosis of lung cancer is often late and its prognosis is poor. In the present study, in vitro chemosensitivity of solid tumours and pleural effusions of lung adenocarcinomas were analysed and compared with clinical drug response.Methods Tumour cells were isolated from resected solid tumours or pleural effusions, and cryopreserved. Three-dimensional (3D) tissue aggregate cultures were set up when the oncoteam reached therapy decision for individual patients. The aggregates were then treated with the selected drug or drug combination and in vitro chemosensitivity was tested individually measuring ATP levels. The clinical response to therapy was assessed by standard clinical evaluation over an 18 months period.Results Based on the data, the in vitro chemosensitivity test results correlate well with clinical treatment response.Conclusions Such tests if implemented into the clinical decision making process might allow the selection of an even more individualised chemotherapy protocol which could lead to better therapy response.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Neoplasias Pulmonares/tratamento farmacológico , Derrame Pleural Maligno/tratamento farmacológico , Adenocarcinoma/complicações , Adenocarcinoma/patologia , Antineoplásicos/farmacologia , Estudos de Viabilidade , Humanos , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/patologia , Derrame Pleural Maligno/complicações , Derrame Pleural Maligno/patologia , Prognóstico , Células Tumorais Cultivadas
7.
Front Immunol ; 10: 862, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31110503

RESUMO

During senescence, Wnt4 expression is down-regulated (unlike their Frizzled receptors), while PPARgamma expression increases in the thymus. Together, these changes allow for thymic degeneration to occur, observed as adipose involution. However, when restored, Wnt4 can efficiently counteract PPARgamma and prevent thymic senescence from developing. The Wnt-pathway activator miR27b has also been reported to inhibit PPARgamma. Our goal was to evaluate the Wnt4 and miR27b levels of Wnt4-transgenic thymic epithelial cell (TEC)-derived exosomes, show their regenerative potential against age-related thymic degeneration, and visualize their binding and distribution both in vitro and in vivo. First, transgenic exosomes were harvested from Wnt4 over-expressing TECs and analyzed by transmission electron microscopy. This unveiled exosomes ranging from 50 to 100 nm in size. Exosomal Wnt4 protein content was assayed by ELISA, while miR27b levels were measured by TaqMan qPCR, both showing elevated levels in transgenic exosomes relative to controls. Of note, kit-purified TEI (total exosome isolate) outperformed UC (ultracentrifugation)-purified exosomes in these parameters. In addition, a significant portion of exosomal Wnt4 proved to be displayed on exosomal surfaces. For functional studies, steroid (Dexamethasone or DX)-induced TECs were used as cellular aging models in which DX-triggered cellular aging was efficiently prevented by transgenic exosomes. Finally, DiI lipid-stained exosomes were applied on the mouse thymus sections and also iv-injected into mice, for in vitro binding and in vivo tracking, respectively. We have observed distinct staining patterns using DiI lipid-stained transgenic exosomes on sections of young and aging murine thymus samples. Moreover, in vivo injected DiI lipid-stained transgenic exosomes showed detectable homing to the thymus. Of note, Wnt4-transgenic exosome homing outperformed control (Wnt5a-transgenic) exosome homing. In summary, our findings indicate that exosomal Wnt4 and miR27b can efficiently counteract thymic adipose involution. Although extrapolation of mouse results to the human setting needs caution, our results appoint transgenic TEC exosomes as promising tools of immune rejuvenation and contribute to the characterization of the immune-modulatory effects of extracellular vesicles in the context of regenerative medicine.


Assuntos
Animais Geneticamente Modificados/genética , Exossomos/genética , Regeneração/genética , Regeneração/fisiologia , Timo/fisiologia , Células A549 , Animais , Linhagem Celular , Linhagem Celular Tumoral , Senescência Celular/genética , Células Epiteliais/fisiologia , Vesículas Extracelulares/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Medicina Regenerativa/métodos , Proteína Wnt4/genética
8.
Int J Ophthalmol ; 11(9): 1440-1446, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30225215

RESUMO

AIM: To study molecular and morphological changes in lens epithelial cells following femtosecond laser-assisted and manually performed continuous curvilinear capsulotomy (CCC) in order to get information about these methods regarding their potential role in the induction of development of secondary cataract. METHODS: Anterior lens capsules (ALC) were removed from 40 patients with age-related cataract by manual CCC and by femtosecond laser-assisted capsulotomy (FLAC). Samples removed by manual CCC were assorted in group 1, FLAC samples were classified in group 2. Morphology of lens epithelial cells was examined with light and electron microscopes. Following capsulotomy, expressions of p53, Bcl-2 and cyclin D1 genes were analyzed with reverse transcriptase polymerase chain reaction. Immunohistochemistry was used to detect the pro-apoptotic p53 in the epithelial cells. RESULTS: Light and electron microscopic examination showed that ALC of group 1 contained more degenerating cells following manual CCC than after FLAC. The expression level of p53 was higher after manual than laser-assisted surgery. Immunocytochemistry indicated significantly higher number of cells containing p53 protein in the manual CCC group than following FLAC. Bcl-2 and cyclin D1 gene expression levels were slightly lower following manual CCC than after FLAC, but the difference was not significant. CONCLUSION: Manually removed ALC shows slightly, but not significantly larger damage due to the mechanical stretching and pulling of the capsule than those removed using FLAC.

9.
Front Immunol ; 9: 1724, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30090106

RESUMO

Chronic obstructive pulmonary disease (COPD) is a devastating, irreversible pathology affecting millions of people worldwide. Clinical studies show that currently available therapies are insufficient, have no or little effect on elevated comorbidities and on systemic inflammation. To develop alternative therapeutic options, a better understanding of the molecular background of COPD is essential. In the present study, we show that non-canonical and pro-inflammatory Wnt5a is up-regulated by cigarette smoking with parallel up-regulation of pro-inflammatory cytokines in both mouse and human model systems. Wnt5a is not only a pro-inflammatory Wnt ligand but can also inhibit the anti-inflammatory peroxisome proliferator-activated receptor gamma transcription and affect M1/M2 macrophage polarization. Both Wnt5a and pro-inflammatory cytokines can be transported in lipid bilayer sealed extracellular vesicles that reach and deliver their contents to every organ measured in the blood of COPD patients, therefore, demonstrating a potential mechanism for the systemic nature of this crippling disease.

10.
Pulm Pharmacol Ther ; 51: 10-17, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29698781

RESUMO

Hypersecretion of viscous mucus is one of the hallmark symptoms of acute and chronic bronchitis and typically develops secondary to an inflammation of the airway epithelium. Bronchipret® TP film-coated tablets (BRO), a herbal medicinal product containing a fixed combination of thyme herb and primula root extracts, has been successfully used clinically for the treatment of acute bronchitis for more than two decades. However, the underlying pharmacological mechanisms of action have not been fully understood so far. We investigated the anti-inflammatory and mucus-regulatory effects of orally administered BRO in an animal model of pulmonary inflammation that was experimentally induced by intratracheal LPS instillation. BRO was administered once daily for up to three days following the induction of inflammation. Treatment with BRO effectively inhibited polymorphonuclear cell influx into the lung as well as the increase in mucin 5ac (MUC5AC) protein. Furthermore, the LPS-induced increase of goblet cell numbers was significantly attenuated by BRO treatment. Subsequent in vitro investigations with IL-13 stimulated human primary respiratory epithelium and the Calu-3 respiratory epithelial cell line in air-liquid-interface culture confirmed the effects on mucus production and goblet cell numbers observed in the in vivo studies. They further suggest that the reduction of MUC5AC protein secretion by BRO is associated with reduced MUC5AC mRNA expression as assessed by quantitative Real-Time PCR. Our studies provide evidence that BRO exerts both anti-inflammatory and mucus-regulatory activity and that BRO's effect on mucin production is partially independent from its anti-inflammatory activity. These results contribute to the understanding of the modes of action underlying the clinical efficacy of BRO in acute bronchitis patients.


Assuntos
Anti-Inflamatórios/farmacologia , Muco/efeitos dos fármacos , Pneumonia/tratamento farmacológico , Timol/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Linhagem Celular , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Mucina-5AC/genética , Muco/metabolismo , Pneumonia/fisiopatologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Timol/administração & dosagem
11.
Front Immunol ; 8: 1515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163553

RESUMO

Thymic senescence contributes to increased incidence of infection, cancer and autoimmunity at senior ages. This process manifests as adipose involution. As with other adipose tissues, thymic adipose involution is also controlled by PPARgamma. This is supported by observations reporting that systemic PPARgamma activation accelerates thymic adipose involution. Therefore, we hypothesized that decreased PPARgamma activity could prevent thymic adipose involution, although it may trigger metabolic adverse effects. We have confirmed that both human and murine thymic sections show marked staining for PPARgamma at senior ages. We have also tested the thymic lobes of PPARgamma haplo-insufficient and null mice. Supporting our working hypothesis both adult PPARgamma haplo-insufficient and null mice show delayed thymic senescence by thymus histology, thymocyte mouse T-cell recombination excision circle qPCR and peripheral blood naive T-cell ratio by flow-cytometry. Delayed senescence showed dose-response with respect to PPARgamma deficiency. Functional immune parameters were also evaluated at senior ages in PPARgamma haplo-insufficient mice (null mice do not reach senior ages due to metabolic adverse affects). As expected, sustained and elevated T-cell production conferred oral tolerance and enhanced vaccination efficiency in senior PPARgamma haplo-insufficient, but not in senior wild-type littermates according to ELISA IgG measurements. Of note, humans also show increased oral intolerance issues and decreased protection by vaccines at senior ages. Moreover, PPARgamma haplo-insufficiency also exists in human known as a rare disease (FPLD3) causing metabolic adverse effects, similar to the mouse. When compared to age- and metabolic disorder-matched other patient samples (FPLD2 not affecting PPARgamma activity), FPLD3 patients showed increased human Trec (hTrec) values by qPCR (within healthy human range) suggesting delayed thymic senescence, in accordance with mouse results and supporting our working hypothesis. In summary, our experiments prove that systemic decrease of PPARgamma activity prevents thymic senescence, albeit with metabolic drawbacks. However, thymic tissue-specific PPARgamma antagonism would likely solve the issue.

12.
Respir Res ; 18(1): 167, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28870231

RESUMO

Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.


Assuntos
Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Wnt/biossíntese , Proteínas Wnt/genética , Via de Sinalização Wnt/fisiologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estudo de Associação Genômica Ampla/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/biossíntese , MicroRNAs/genética , Via de Sinalização Wnt/efeitos dos fármacos
13.
Toxicol Lett ; 281: 44-52, 2017 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-28916286

RESUMO

Primycin-sulphate is a highly effective compound against Gram (G) positive bacteria. It has a potentially synergistic effect with vancomycin and statins which makes primycin-sulphate a potentially very effective preparation. Primycin-sulphate is currently used exclusively in topical preparations. In vitro animal hepatocyte and neuromuscular junction studies (in mice, rats, snakes, frogs) as well as in in vitro human red blood cell experiments were used to test toxicity. During these studies, the use of primycin-sulphate resulted in reduced cellular membrane integrity and modified ion channel activity. Additionally, parenteral administration of primycin-sulphate to mice, dogs, cats, rabbits and guinea pigs indicated high level of acute toxicity. The objective of this study was to reveal the cytotoxic and gene expression modifying effects of primycin-sulphate in a human system using an in vitro, three dimensional (3D) human hepatic model system. Within the 3D model, primycin-sulphate presented no acute cytotoxicity at concentrations 1µg/ml and below. However, even at low concentrations, primycin-sulphate affected gene expressions by up-regulating inflammatory cytokines (e.g., IL6), chemokines (e.g., CXCL5) and by down-regulating molecules of the lipid metabolism (e.g., peroxisome proliferator receptor (PPAR) alpha, gamma, etc). Down-regulation of PPAR alpha cannot just disrupt lipid production but can also affect cytochrome P450 metabolic enzyme (CYP) 3A4 expression, highlighting the need for extensive drug-drug interaction (DDI) studies before human oral or parenteral preparations can be developed.


Assuntos
Imageamento Tridimensional , Macrolídeos/toxicidade , Sulfatos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Quimiocina CXCL5/genética , Quimiocina CXCL5/metabolismo , Técnicas de Cocultura , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Determinação de Ponto Final , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Análise em Microsséries , Modelos Moleculares , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Regulação para Cima
14.
Sci Rep ; 6: 34280, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27711054

RESUMO

The commitment steps of mesenchymal stromal cells (MSCs) to adipogenic and other lineages have been widely studied but not fully understood. Therefore, it is critical to understand which molecules contribute to the conversion of stem cells into differentiated cells. The scaffold protein Tks4 plays a role in podosome formation, EGFR signaling and ROS production. Dysfunction of Tks4 causes a hereditary disease called Frank-ter Haar syndrome with a variety of defects concerning certain mesenchymal tissues (bone, fat and cartilage) throughout embryogenic and postnatal development. In this study, we aimed to analyze how the mutation of Tks4 affects the differentiation potential of multipotent bone marrow MSCs (BM-MSCs). We generated a Tks4 knock-out mouse strain on C57Bl/6 background, and characterized BM-MSCs isolated from wild type and Tks4-/- mice to evaluate their differentiation. Tks4-/- BM-MSCs had reduced ability to differentiate into osteogenic and adipogenic lineages compared to wild type. Studying the expression profile of a panel of lipid-regulated genes during adipogenic induction revealed that the expression of adipogenic transcription factors, genes responsible for lipid droplet formation, sterol and fatty acid metabolism was delayed or reduced in Tks4-/- BM-MSCs. Taken together, these results establish a novel function for Tks4 in the regulation of MSC differentiation.


Assuntos
Adipogenia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Fosfoproteínas/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/metabolismo , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Camundongos , Camundongos Knockout , Osteocondrodisplasias/congênito , Osteocondrodisplasias/genética , Osteocondrodisplasias/metabolismo , Fosfoproteínas/genética
15.
BMC Pulm Med ; 16(1): 51, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27080864

RESUMO

BACKGROUND: CD248 or Endosialin is a transmembrane molecule expressed in stromal cells binding to extracellular matrix (ECM) components. It has been previously implicated in kidney fibrosis, rheumatoid arthritis as well as in tumour-stromal interactions. This study investigates the role of CD248 in the pathogenesis of fibrotic diseases in Idiopathic Pulmonary Fibrosis (IPF). METHODS: CD248 quantitative immunohistochemistry (IHC) was performed on lung samples from 22 IPF patients and its expression was assayed in cultured pulmonary fibroblasts and epithelial cells. Effects of CD248 silencing was evaluated on fibroblast proliferation and myofibroblast differentiation. RESULTS: IHC revealed strong CD248 expression in mesenchymal cells of normal lung structures such as pleura and adventitia but not in epithelium. Fibrotic areas showed markedly stronger staining than unaffected lung tissue. The extent of CD248 staining showed a significant negative correlation to lung function parameters FEV1, FVC, TLC, and TLCO (r2 > 0 · 35, p < 0 · 01). CD248 protein levels were significantly greater in IPF-derived lung fibroblasts vs normal lung fibroblasts (p < 0 · 01) and CD248 silencing significantly reduced the proliferation of lung fibroblasts, but did not affected myofibroblast differentiation. CONCLUSION: We conclude that CD248 overexpression is possibly involved in the pathogenesis of IPF and it has potential as a disease severity marker. Given that CD248 ligands are collagen type I, IV and fibronectin, we hypothesise that CD248 signalling represents a novel matrix-fibroblast interaction that may be a potential therapeutic target in IPF.


Assuntos
Antígenos CD/genética , Antígenos de Neoplasias/genética , Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , RNA/genética , Adulto , Idoso , Antígenos CD/biossíntese , Antígenos de Neoplasias/biossíntese , Biomarcadores/metabolismo , Biópsia , Proliferação de Células , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Citometria de Fluxo , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/metabolismo , Imuno-Histoquímica , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Índice de Gravidade de Doença , Transdução de Sinais
16.
Immunobiology ; 219(8): 644-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24768153

RESUMO

The Wnt/beta-catenin signaling pathway plays an important role in the commitment and development of thymic epithelial precursors. Here we document similarities of thymic epithelial development during embryogenesis in human and mouse. We stained for thymic epithelial surface markers (EpCAM1, Ly51, K8) and ligand/receptor pair (Wnt4, Fz4). Our results confirm the relevance of using murine test systems to model human embryonic thymic epithelial cell development. We have efficiently transduced murine embryonic epithelial cells using mock (GFP) and Wnt/beta-catenin-inhibiting (ICAT-encoding) recombinant adenoviral vectors. The effect of Wnt4 was assayed in the form of Wnt4-containing supernatant. Gene expressional changes were assessed by Q-PCR and also morphology using conventional and confocal fluorescent microscopy. Functional aberration caused by ICAT was assessed through evaluation of thymocyte maturation. Our results demonstrate that ICAT and Wnt4 have reciprocal effects during embryonic thymic epithelial cell development. While Wnt4 is capable of increasing the expression level of characteristic intracellular (FoxN1), surface (MHCII) and secreted (IL7) molecules, Wnt/beta-catenin inhibition through ICAT can moderately decrease their expression. Morphological changes induced by ICAT resulted in the development of hollow, inflated thymic lobes with reduced epithelial cell numbers. The ICAT-treated thymic lobes also showed significant impairment in supporting thymocyte development and maturation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Epitélio/patologia , Proteínas Repressoras/metabolismo , Timócitos/fisiologia , Timo/patologia , Proteína Wnt4/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/genética , Células Cultivadas , Técnicas de Cultura Embrionária , Epitélio/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Interleucina-7/genética , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos , Proteínas Repressoras/genética , Timo/imunologia , Transgenes/genética , Via de Sinalização Wnt/genética , Proteína Wnt4/genética , beta Catenina/metabolismo
17.
PLoS One ; 8(3): e57393, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23505429

RESUMO

The majority of lung cancers (LC) belong to the non-small cell lung carcinoma (NSCLC) type. The two main NSCLC sub-types, namely adenocarcinoma (AC) and squamous cell carcinoma (SCC), respond differently to therapy. Whereas the link between cigarette smoke and lung cancer risk is well established, the relevance of non-canonical Wnt pathway up-regulation detected in SCC remains poorly understood. The present study was undertaken to investigate further the molecular events in canonical and non-canonical Wnt signalling during SCC development. A total of 20 SCC and AC samples with matched non-cancerous controls were obtained after surgery. TaqMan array analysis confirmed up-regulation of non-canonical Wnt5a and Wnt11 and identified down-regulation of canonical Wnt signalling in SCC samples. The molecular changes were tested in primary small airway epithelial cells (SAEC) and various lung cancer cell lines (e.g. A549, H157, etc). Our studies identified Wnt11 and Wnt5a as regulators of cadherin expression and potentiated relocation of ß-catenin to the nucleus as an important step in decreased cellular adhesion. The presented data identifies additional details in the regulation of SCC that can aid identification of therapeutic drug targets in the future.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Transformação Celular Neoplásica/metabolismo , Neoplasias Pulmonares/metabolismo , Via de Sinalização Wnt , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Transporte Proteico , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Wnt-5a , beta Catenina/metabolismo
18.
Mech Ageing Dev ; 132(5): 249-56, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21549744

RESUMO

Members of the Wnt family of secreted glyco-lipo-proteins affect intrathymic T-cell development and are abundantly secreted by thymic epithelial cells (TECs) that create the specific microenvironment for thymocytes to develop into mature T-cells. During ageing, Wnt expression declines allowing adipoid involution of the thymic epithelium leading to reduced naïve T-cell output. The protein kinase C (PKC) family of serine-threonine kinases is involved in numerous intracellular biochemical processes, including Wnt signal transduction. In the present study, PKCδ expression is shown to increase with age and to co-localise with Wnt receptors Frizzled (Fz)-4 and -6. It is also demonstrated that connective tissue growth factor (CTGF) is a Wnt-4 target gene and is potentially involved in a negative feed-back loop of Wnt signal regulation. Down-regulation of Wnt-4 expression and activation of multiple repressor pathways suppressing ß-catenin dependent signalling in TECs contribute to the initiation of thymic senescence.


Assuntos
Senescência Celular/fisiologia , Células Epiteliais/metabolismo , Transdução de Sinais/fisiologia , Timo/metabolismo , Proteínas Wnt/metabolismo , Animais , Linhagem Celular , Células Epiteliais/citologia , Receptores Frizzled/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteína Quinase C-delta/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Linfócitos T/metabolismo , Timo/citologia , beta Catenina/metabolismo
19.
Rejuvenation Res ; 14(3): 241-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21453014

RESUMO

Glucocorticoids are widely used immunosuppressive drugs in treatment of autoimmune diseases and hematological malignancies. Glucocorticoids are particularly effective immune suppressants, because they induce rapid peripheral T cell and thymocyte apoptosis resulting in impaired T cell-dependent immune responses. Although glucocorticoids can induce apoptotic cell death directly in developing thymocytes, how exogenous glucocorticoids affect the thymic epithelial network that provides the microenvironment for T cell development is still largely unknown. In the present work, we show that primary thymic epithelial cells (TECs) express glucocorticoid receptors and that high-dosage dexamethasone induces degeneration of the thymic epithelium within 24 h of treatment. Changes in organ morphology are accompanied by a decrease in the TEC transcription factor FoxN1 and its regulator Wnt-4 parallel with upregulation of lamina-associated polypeptide 2α and peroxisome proliferator activator receptor γ, two characteristic molecular markers for adipose thymic involution. Overexpression of Wnt-4, however, can prevent upregulation of adipose differentiation-related aging markers, suggesting an important role of Wnt-4 in thymic senescence.


Assuntos
Senescência Celular/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Dexametasona/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Timo/citologia , Proteína Wnt4/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Linhagem Celular , Transdiferenciação Celular/efeitos dos fármacos , Dexametasona/administração & dosagem , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Glucocorticoides/metabolismo
20.
PLoS One ; 5(5): e10701, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20502698

RESUMO

Age-associated thymic involution has considerable physiological impact by inhibiting de novo T-cell selection. This impaired T-cell production leads to weakened immune responses. Yet the molecular mechanisms of thymic stromal adipose involution are not clear. Age-related alterations also occur in the murine thymus providing an excellent model system. In the present work structural and molecular changes of the murine thymic stroma were investigated during aging. We show that thymic epithelial senescence correlates with significant destruction of epithelial network followed by adipose involution. We also show in purified thymic epithelial cells the age-related down-regulation of Wnt4 (and subsequently FoxN1), and the prominent increase in LAP2alpha expression. These senescence-related changes of gene expression are strikingly similar to those observed during mesenchymal to pre-adipocyte differentiation of fibroblast cells suggesting similar molecular background in epithelial cells. For molecular level proof-of-principle stable LAP2alpha and Wnt4-over-expressing thymic epithelial cell lines were established. LAP2alpha over-expression provoked a surge of PPARgamma expression, a transcription factor expressed in pre-adipocytes. In contrast, additional Wnt4 decreased the mRNA level of ADRP, a target gene of PPARgamma. Murine embryonic thymic lobes have also been transfected with LAP2alpha- or Wnt4-encoding lentiviral vectors. As expected LAP2alpha over-expression increased, while additional Wnt4 secretion suppressed PPARgamma expression. Based on these pioneer experiments we propose that decreased Wnt activity and increased LAP2alpha expression provide the molecular basis during thymic senescence. We suggest that these molecular changes trigger thymic epithelial senescence accompanied by adipose involution. This process may either occur directly where epithelium can trans-differentiate into pre-adipocytes; or indirectly where first epithelial to mesenchymal transition (EMT) occurs followed by subsequent pre-adipocyte differentiation. The latter version fits better with literature data and is supported by the observed histological and molecular level changes.


Assuntos
Senescência Celular , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Proteínas de Membrana/metabolismo , Timo/metabolismo , Timo/patologia , Proteínas Wnt/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Linhagem Celular , Embrião de Mamíferos/metabolismo , Epitélio/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Biológicos , Técnicas de Cultura de Órgãos , Reprodutibilidade dos Testes , Timo/embriologia , Transfecção , Proteína Wnt4
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA