Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294491

RESUMO

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Assuntos
Adenocarcinoma , Citidina Desaminase , Inibidores da Síntese de Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Citidina Desaminase/metabolismo , DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Replicação do DNA , Inibidores da Síntese de Ácido Nucleico/uso terapêutico
2.
Cell Rep ; 42(3): 112211, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36884350

RESUMO

Stress granules (SGs) and processing bodies (PBs) are membraneless cytoplasmic assemblies regulating mRNAs under environmental stress such as viral infections, neurological disorders, or cancer. Upon antigen stimulation, T lymphocytes mediate their immune functions under regulatory mechanisms involving SGs and PBs. However, the impact of T cell activation on such complexes in terms of formation, constitution, and relationship remains unknown. Here, by combining proteomic, transcriptomic, and immunofluorescence approaches, we simultaneously characterized the SGs and PBs from primary human T lymphocytes pre and post stimulation. The identification of the proteomes and transcriptomes of SGs and PBs indicate an unanticipated molecular and functional complementarity. Notwithstanding, these granules keep distinct spatial organizations and abilities to interact with mRNAs. This comprehensive characterization of the RNP granule proteomic and transcriptomic landscapes provides a unique resource for future investigations on SGs and PBs in T lymphocytes.


Assuntos
Ativação Linfocitária , Corpos de Processamento , Proteoma , Grânulos de Estresse , Linfócitos T , Transcriptoma , Grânulos de Estresse/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Corpos de Processamento/metabolismo , Proteoma/metabolismo , Transcriptoma/genética , Proteômica , Perfilação da Expressão Gênica , Humanos , Masculino , Feminino , Adulto , Células Cultivadas , RNA/análise , Biossíntese de Proteínas , Transcrição Gênica , Fracionamento Celular
3.
Metabolites ; 12(9)2022 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36144257

RESUMO

Tyrosine kinase inhibitors pazopanib and sunitinib are both used to treat advanced renal cell carcinoma but expose patients to an increased risk of hepatotoxicity. We have previously identified two aldehyde derivatives for pazopanib and sunitinib (P-CHO and S-CHO, respectively) in liver microsomes. In this study, we aimed to decipher their role in hepatotoxicity by treating HepG2 and HepaRG hepatic cell lines with these derivatives and evaluating cell viability, mitochondrial dysfunction, and oxidative stress accumulation. Additionally, plasma concentrations of P-CHO were assessed in a cohort of patients treated with pazopanib. Results showed that S-CHO slightly decreased the viability of HepG2, but to a lesser extent than sunitinib, and affected the maximal respiratory capacity of the mitochondrial chain. P-CHO decreased viability and ATP production in HepG2. Traces of P-CHO were detected in the plasma of patients treated with pazopanib. Overall, these results showed that P-CHO and S-CHO affect hepatocyte integrity and could be involved in the pazopanib and sunitinib hepatotoxicity.

4.
Oncoimmunology ; 10(1): 1939518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721945

RESUMO

γδ T lymphocytes diverge from conventional T CD8 lymphocytes for ontogeny, homing, and antigen specificity, but whether their differentiation in tumors also deviates was unknown. Using innovative analyses of our original and ~150 published single-cell RNA sequencing datasets validated by phenotyping of human tumors and murine models, here we present the first high-resolution view of human γδ T cell differentiation in cancer. While γδ T lymphocytes prominently encompass TCRVγ9 cells more differentiated than T CD8 in healthy donor's blood, a different scenario is unveiled in tumors. Solid tumors and lymphomas are infiltrated by a majority of TCRVγnon9 γδ T cells which are quantitatively correlated and remarkably aligned with T CD8 for differentiation, exhaustion, gene expression profile, and response to immune checkpoint therapy. This cancer-wide association is critical for developing cancer immunotherapies.


Assuntos
Neoplasias , Transcriptoma , Animais , Linfócitos T CD8-Positivos , Diferenciação Celular , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Neoplasias/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Subpopulações de Linfócitos T
5.
Viruses ; 13(11)2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34835019

RESUMO

The detailed characterization of human γδ T lymphocyte differentiation at the single-cell transcriptomic (scRNAseq) level in tumors and patients with coronavirus disease 2019 (COVID-19) requires both a reference differentiation trajectory of γδ T cells and a robust mapping method for additional γδ T lymphocytes. Here, we incepted such a method to characterize thousands of γδ T lymphocytes from (n = 95) patients with cancer or adult and pediatric COVID-19 disease. We found that cancer patients with human papillomavirus-positive head and neck squamous cell carcinoma and Epstein-Barr virus-positive Hodgkin's lymphoma have γδ tumor-infiltrating T lymphocytes that are more prone to recirculate from the tumor and avoid exhaustion. In COVID-19, both TCRVγ9 and TCRVγnon9 subsets of γδ T lymphocytes relocalize from peripheral blood mononuclear cells (PBMC) to the infected lung tissue, where their advanced differentiation, tissue residency, and exhaustion reflect T cell activation. Although severe COVID-19 disease increases both recruitment and exhaustion of γδ T lymphocytes in infected lung lesions but not blood, the anti-IL6R therapy with Tocilizumab promotes γδ T lymphocyte differentiation in patients with COVID-19. PBMC from pediatric patients with acute COVID-19 disease display similar γδ T cell lymphopenia to that seen in adult patients. However, blood γδ T cells from children with the COVID-19-related multisystem inflammatory syndrome are not lymphodepleted, but they are differentiated as in healthy PBMC. These findings suggest that some virus-induced memory γδ T lymphocytes durably persist in the blood of adults and could subsequently infiltrate and recirculate in tumors.


Assuntos
COVID-19/imunologia , Linfócitos do Interstício Tumoral/imunologia , Neoplasias/imunologia , RNA-Seq , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Adulto , Líquido da Lavagem Broncoalveolar/imunologia , COVID-19/complicações , Diferenciação Celular , Criança , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/virologia , Herpesvirus Humano 4/isolamento & purificação , Doença de Hodgkin/imunologia , Doença de Hodgkin/virologia , Humanos , Pulmão/imunologia , Ativação Linfocitária , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/fisiologia , Neoplasias/virologia , Papillomaviridae/isolamento & purificação , Índice de Gravidade de Doença , Análise de Célula Única , Síndrome de Resposta Inflamatória Sistêmica/imunologia , Subpopulações de Linfócitos T/fisiologia
6.
Mol Cancer Ther ; 20(12): 2433-2445, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34552006

RESUMO

The PI3K pathway is highly active in human cancers. The four class I isoforms of PI3K are activated by distinct mechanisms leading to a common downstream signaling. Their downstream redundancy is thought to be responsible for treatment failures of PI3K inhibitors. We challenged this concept, by mapping the differential phosphoproteome evolution in response to PI3K inhibitors with different isoform-selectivity patterns in pancreatic cancer, a disease currently without effective therapy. In this cancer, the PI3K signal was shown to control cell proliferation. We compared the effects of LY294002 that inhibit with equal potency all class I isoenzymes and downstream mTOR with the action of inhibitors with higher isoform selectivity toward PI3Kα, PI3Kß, or PI3Kγ (namely, A66, TGX-221 and AS-252424). A bioinformatics global pathway analysis of phosphoproteomics data allowed us to identify common and specific signals activated by PI3K inhibitors supported by the biological data. AS-252424 was the most effective treatment and induced apoptotic pathway activation as well as the highest changes in global phosphorylation-regulated cell signal. However, AS-252424 treatment induced reactivation of Akt, therefore decreasing the treatment outcome on cell survival. Reversely, AS-252424 and A66 combination treatment prevented p-Akt reactivation and led to synergistic action in cell lines and patient organoids. The combination of clinically approved α-selective BYL-719 with γ-selective IPI-549 was more efficient than single-molecule treatment on xenograft growth. Mapping unique adaptive signaling responses to isoform-selective PI3K inhibition will help to design better combinative treatments that prevent the induction of selective compensatory signals.


Assuntos
Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Proteômica/métodos , Animais , Linhagem Celular Tumoral , Resistência a Medicamentos , Humanos , Camundongos , Neoplasias Pancreáticas/patologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia
7.
Front Immunol ; 12: 597651, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732232

RESUMO

High-definition transcriptomic studies through single-cell RNA sequencing (scRNA-Seq) have revealed the heterogeneity and functionality of the various microenvironments across numerous solid tumors. Those pioneer studies have highlighted different cellular signatures correlated with clinical response to immune checkpoint inhibitors. scRNA-Seq offers also a unique opportunity to unravel the intimate heterogeneity of the ecosystems across different lymphoma entities. In this review, we will first cover the basics and future developments of the technology, and we will discuss its input in the field of translational lymphoma research, from determination of cell-of-origin and functional diversity, to monitoring of anti-cancer targeted drugs response and toxicities, and how new improvements in both data collection and interpretation will further foster precision medicine in the upcoming years.


Assuntos
Perfilação da Expressão Gênica , Linfoma/genética , Análise de Célula Única , Transcriptoma , Biomarcadores Tumorais , Terapia Combinada , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma/diagnóstico , Linfoma/patologia , Linfoma/terapia , Anotação de Sequência Molecular , Medicina de Precisão , Prognóstico , Análise de Célula Única/métodos , Resultado do Tratamento
8.
Redox Biol ; 40: 101861, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33548859

RESUMO

Preeclampsia (PE) is a multifactorial pregnancy disease, characterized by new-onset gestational hypertension with (or without) proteinuria or end-organ failure, exclusively observed in humans. It is a leading cause of maternal morbidity affecting 3-7% of pregnant women worldwide. PE pathophysiology could result from abnormal placentation due to a defective trophoblastic invasion and an impaired remodeling of uterine spiral arteries, leading to a poor adaptation of utero-placental circulation. This would be associated with hypoxia/reoxygenation phenomena, oxygen gradient fluctuations, altered antioxidant capacity, oxidative stress, and reduced nitric oxide (NO) bioavailability. This results in part from the reaction of NO with the radical anion superoxide (O2•-), which produces peroxynitrite ONOO-, a powerful pro-oxidant and inflammatory agent. Another mechanism is the progressive inhibition of the placental endothelial nitric oxide synthase (eNOS) by oxidative stress, which results in eNOS uncoupling via several events such as a depletion of the eNOS substrate L-arginine due to increased arginase activity, an oxidation of the eNOS cofactor tetrahydrobiopterin (BH4), or eNOS post-translational modifications (for instance by S-glutathionylation). The uncoupling of eNOS triggers a switch of its activity from a NO-producing enzyme to a NADPH oxidase-like system generating O2•-, thereby potentiating ROS production and oxidative stress. Moreover, in PE placentas, eNOS could be post-translationally modified by lipid peroxidation-derived aldehydes such as 4-oxononenal (ONE) a highly bioreactive agent, able to inhibit eNOS activity and NO production. This review summarizes the dysfunction of placental eNOS evoked by oxidative stress and lipid peroxidation products, and the potential consequences on PE pathogenesis.


Assuntos
Óxido Nítrico Sintase Tipo III , Pré-Eclâmpsia , Endotélio Vascular/metabolismo , Feminino , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez
9.
JCI Insight ; 6(2)2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33332284

RESUMO

Tumor antigen-specific CD4 T cells accumulate at tumor sites, evoking their involvement in antitumor effector functions in situ. Contrary to CD8 cytotoxic T lymphocyte exhaustion, that of CD4 T cells remains poorly appreciated. Here, using phenotypic, transcriptomic, and functional approaches, we characterized CD4 T cell exhaustion in patients with head and neck, cervical, and ovarian cancer. We identified a CD4 tumor-infiltrating lymphocyte (TIL) population, defined by high PD-1 and CD39 expression, which contained high proportions of cytokine-producing cells, although the quantity of cytokines produced by these cells was low, evoking an exhausted state. Terminal exhaustion of CD4 TILs was instated regardless of TIM-3 expression, suggesting divergence with CD8 T cell exhaustion. scRNA-Seq and further phenotypic analyses uncovered similarities with the CD8 T cell exhaustion program. In particular, PD-1hiCD39+ CD4 TILs expressed the exhaustion transcription factor TOX and the chemokine CXCL13 and were tumor antigen specific. In vitro, PD-1 blockade enhanced CD4 TIL activation, as evidenced by increased CD154 expression and cytokine secretion, leading to improved dendritic cell maturation and consequently higher tumor-specific CD8 T cell proliferation. Our data identify exhausted CD4 TILs as players in responsiveness to immune checkpoint blockade.


Assuntos
Linfócitos do Interstício Tumoral/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T Auxiliares-Indutores/imunologia , Antígenos de Neoplasias/imunologia , Apirase/imunologia , Linfócitos T CD8-Positivos/imunologia , Feminino , Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Humanos , Tolerância Imunológica/genética , Imunidade Celular/genética , Técnicas In Vitro , Ativação Linfocitária/genética , Cooperação Linfocítica/genética , Masculino , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/imunologia , Receptor de Morte Celular Programada 1/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Evasão Tumoral/genética , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia
10.
Biomark Res ; 8(1): 72, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298182

RESUMO

BACKGROUND: Ibrutinib, an irreversible Bruton Tyrosine Kinase (BTK) inhibitor, has revolutionized Chronic Lymphocytic Leukemia (CLL) treatment, but resistances to ibrutinib have emerged, whether related or not to BTK mutations. Patterns of CLL evolution under ibrutinib therapy are well characterized for the leukemic cells but not for their microenvironment. METHODS: Here, we addressed this question at the single cell level of both transcriptome and immune-phenotype. The PBMCs from a CLL patient were monitored during ibrutinib treatment using Cellular Indexing of Transcriptomes and Epitopes by sequencing (CITE-Seq) technology. RESULTS: This unveiled that the short clinical relapse of this patient driven by BTK mutation is associated with intraclonal heterogeneity in B leukemic cells and up-regulation of common signaling pathways induced by ibrutinib in both B leukemic cells and immune cells. This approach also pinpointed a subset of leukemic cells present before treatment and highly enriched during progression under ibrutinib. These latter exhibit an original gene signature including up-regulated BCR, MYC-activated, and other targetable pathways. Meanwhile, although ibrutinib differentially affected the exhaustion of T lymphocytes, this treatment enhanced the T cell cytotoxicity even during disease progression. CONCLUSIONS: These results could open new alternative of therapeutic strategies for ibrutinib-refractory CLL patients, based on immunotherapy or targeting B leukemic cells themselves.

11.
Cancer Immunol Res ; 8(7): 869-882, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32295784

RESUMO

Although understanding of T-cell exhaustion is widely based on mouse models, its analysis in patients with cancer could provide clues indicating tumor sensitivity to immune checkpoint blockade (ICB). Data suggest a role for costimulatory pathways, particularly CD28, in exhausted T-cell responsiveness to PD-1/PD-L1 blockade. Here, we used single-cell transcriptomic, phenotypic, and functional approaches to dissect the relation between CD8+ T-cell exhaustion, CD28 costimulation, and tumor specificity in head and neck, cervical, and ovarian cancers. We found that memory tumor-specific CD8+ T cells, but not bystander cells, sequentially express immune checkpoints once they infiltrate tumors, leading, in situ, to a functionally exhausted population. Exhausted T cells were nonetheless endowed with effector and tumor residency potential but exhibited loss of the costimulatory receptor CD28 in comparison with their circulating memory counterparts. Accordingly, PD-1 inhibition improved proliferation of circulating tumor-specific CD8+ T cells and reversed functional exhaustion of specific T cells at tumor sites. In agreement with their tumor specificity, high infiltration of tumors by exhausted cells was predictive of response to therapy and survival in ICB-treated patients with head and neck cancer. Our results showed that PD-1 blockade-mediated proliferation/reinvigoration of circulating memory T cells and local reversion of exhaustion occur concurrently to control tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Antígenos CD28/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Epiteliais e Glandulares/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Antígenos CD28/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/fisiologia , Feminino , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Análise de Célula Única/métodos , Taxa de Sobrevida , Transcriptoma
12.
Nucleic Acids Res ; 47(21): e133, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31294801

RESUMO

The momentum of scRNA-seq datasets prompts for simple and powerful tools exploring their meaningful signatures. Here we present Single-Cell_Signature_Explorer (https://sites.google.com/site/fredsoftwares/products/single-cell-signature-explorer), the first method for qualitative and high-throughput scoring of any gene set-based signature at the single cell level and its visualization using t-SNE or UMAP. By scanning datasets for single or combined signatures, it rapidly maps any multi-gene feature, exemplified here with signatures of cell lineages, biological hallmarks and metabolic pathways in large scRNAseq datasets of human PBMC, melanoma, lung cancer and adult testis.


Assuntos
RNA Citoplasmático Pequeno/genética , Análise de Sequência de RNA , Análise de Célula Única , Software , Biologia Computacional , Bases de Dados Genéticas , Humanos
13.
Proc Natl Acad Sci U S A ; 116(24): 11906-11915, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31118283

RESUMO

γδ T lymphocytes represent ∼1% of human peripheral blood mononuclear cells and even more cells in most tissues of vertebrates. Although they have important anticancer functions, most current single-cell RNA sequencing (scRNA-seq) studies do not identify γδ T lymphocytes because their transcriptomes at the single-cell level are unknown. Here we show that high-resolution clustering of large scRNA-seq datasets and a combination of gene signatures allow the specific detection of human γδ T lymphocytes and identification of their T cell receptor (TCR)Vδ1 and TCRVδ2 subsets in large datasets from complex cell mixtures. In t-distributed stochastic neighbor embedding plots from blood and tumor samples, the few γδ T lymphocytes appear collectively embedded between cytotoxic CD8 T and NK cells. Their TCRVδ1 and TCRVδ2 subsets form close yet distinct subclusters, respectively neighboring NK and CD8 T cells because of expression of shared and distinct cytotoxic maturation genes. Similar pseudotime maturation trajectories of TCRVδ1 and TCRVδ2 γδ T lymphocytes were discovered, unveiling in both subsets an unattended pool of terminally differentiated effector memory cells with preserved proliferative capacity, a finding confirmed by in vitro proliferation assays. Overall, the single-cell transcriptomes of thousands of individual γδ T lymphocytes from different CMV+ and CMV- donors reflect cytotoxic maturation stages driven by the immunological history of donors. This landmark study establishes the rationale for identification, subtyping, and deep characterization of human γδ T lymphocytes in further scRNA-seq studies of complex tissues in physiological and disease conditions.


Assuntos
Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Sequência de Bases , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Humanos , Memória Imunológica/imunologia , Células Matadoras Naturais/imunologia , Leucócitos Mononucleares/imunologia , Análise de Sequência de RNA/métodos , Transcriptoma/imunologia
14.
Sci Rep ; 9(1): 4181, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862887

RESUMO

Discovery of protein modification sites relies on protein digestion by proteases and mass spectrometry (MS) identification of the modified peptides. Depending on proteases used and target protein sequence, this method yields highly variable coverage of modification sites. We introduce PTMselect, a digestion-simulating software which tailors the optimal set of proteases for discovery of global or targeted modification from any single or multiple proteins.


Assuntos
Processamento de Proteína Pós-Traducional , Software , Espectrometria de Massas em Tandem , Algoritmos , Animais , Cromatografia Líquida , Camundongos , Peptídeos/metabolismo
15.
Cell Rep ; 26(1): 94-107.e7, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30605689

RESUMO

Despite the clinical success of blocking inhibitory immune checkpoint receptors such as programmed cell death-1 (PD-1) in cancer, the mechanisms controlling the expression of these receptors have not been fully elucidated. Here, we identify a post-transcriptional mechanism regulating PD-1 expression in T cells. Upon activation, the PDCD1 mRNA and ribonucleoprotein complexes coalesce into stress granules that require microtubules and the kinesin 1 molecular motor to proceed to translation. Hence, PD-1 expression is highly sensitive to microtubule or stress granule inhibitors targeting this pathway. Evidence from healthy donors and cancer patients reveals a common regulation for the translation of CTLA4, LAG3, TIM3, TIGIT, and BTLA but not of the stimulatory co-receptors OX40, GITR, and 4-1BB mRNAs. In patients, disproportionality analysis of immune-related adverse events for currently used microtubule drugs unveils a significantly higher risk of autoimmunity. Our findings reveal a fundamental mechanism of immunoregulation with great importance in cancer immunotherapy.


Assuntos
Imunoterapia/métodos , Microtúbulos/metabolismo , Linfócitos T/imunologia , Humanos
16.
Front Immunol ; 9: 977, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780393

RESUMO

Immunomodulatory drugs (IMiDs) are anticancer drugs with immunomodulatory, anti-angiogenesis, anti-proliferative, and pro-apoptotic properties. IMiDs are currently used for the treatment of multiple myeloma, myelodysplastic syndrome, and B-cell lymphoma; however, little is known about efficacy in acute myeloid leukemia (AML). We proposed in this study to investigate the relevance of IMiDs therapy for AML treatment. We evaluated the effect of IMiDs on primary AML blasts (n = 24), and the impact in natural killer (NK) cell-mediated immunosurveillance of AML. Using primary AML cells and an immunodeficient mouse leukemia xenograft model, we showed that IMiDs induce AML cell death in vitro and impair leukemia progression in vivo. In addition, treatment of AML blasts with IMiDs resulted in enhanced allogeneic NK cell anti-leukemia reactivity. Treatment by pomalidomide of AML blasts enhanced lysis, degranulation, and cytokine production by primary allogeneic NK cells. Furthermore, the treatment with lenalidomide of patients with myeloid malignancies resulted in NK cell phenotypic changes similar to those observed in vitro. IMiDs increased CD56 and decreased NKp30, NKp46, and KIR2D expression on NK cells. Finally, AML blasts treatment with IMiDs induced phenotypic alterations including downregulation of HLA-class I. The effect of pomalidomide was not correlated with cereblon expression and A/G polymorphism in AML cells. Our data revealed, a yet unobserved, dual effects on AML affecting both AML survival and their sensitivity to NK immunotherapy using IMiDs. Our study encourages continuing investigation for the use of IMiDs in AML, especially in combination with conventional therapy or immunotherapy strategies.


Assuntos
Antineoplásicos/uso terapêutico , Fatores Imunológicos/uso terapêutico , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/imunologia , Idoso , Idoso de 80 Anos ou mais , Animais , Antígeno CD56/genética , Antígeno CD56/imunologia , Células Cultivadas , Citotoxicidade Imunológica , Genes MHC Classe I , Humanos , Células K562 , Lenalidomida/uso terapêutico , Masculino , Camundongos , Pessoa de Meia-Idade , Monitorização Imunológica , Receptor 3 Desencadeador da Citotoxicidade Natural/genética , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Talidomida/análogos & derivados , Talidomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Oncoimmunology ; 6(3): e1284723, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405516

RESUMO

Most human blood γδ cells are cytolytic TCRVγ9Vδ2+ lymphocytes with antitumor activity. They are currently investigated in several clinical trials of cancer immunotherapy but so far, their tumor infiltration has not been systematically explored across human cancers. Novel algorithms allowing the deconvolution of bulk tumor transcriptomes to find the relative proportions of infiltrating leucocytes, such as CIBERSORT, should be appropriate for this aim but in practice they fail to accurately recognize γδ T lymphocytes. Here, by implementing machine learning from microarray data, we first improved the computational identification of blood-derived TCRVγ9Vδ2+ γδ lymphocytes and then applied this strategy to assess their abundance as tumor infiltrating lymphocytes (γδ TIL) in ∼10,000 cancer biopsies from 50 types of hematological and solid malignancies. We observed considerable inter-individual variation of TCRVγ9Vδ2+γδ TIL abundance both within each type and across the spectrum of cancers tested. We report their prominence in B cell-acute lymphoblastic leukemia (B-ALL), acute promyelocytic leukemia (M3-AML) and chronic myeloid leukemia (CML) as well as in inflammatory breast, prostate, esophagus, pancreas and lung carcinoma. Across all cancers, the abundance of αß TILs and TCRVγ9Vδ2+ γδ TILs did not correlate. αß TIL abundance paralleled the mutational load of tumors and positively correlated with inflammation, infiltration of monocytes, macrophages and dendritic cells (DC), antigen processing and presentation, and cytolytic activity, in line with an association with a favorable outcome. In contrast, the abundance of TCRVγ9Vδ2+ γδ TILs did not correlate with these hallmarks and was variably associated with outcome, suggesting that distinct contexts underlie TCRVγ9Vδ2+ γδ TIL and αß TIL mobilizations in cancer.

18.
Oncoimmunology ; 5(7): e1188246, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27622044

RESUMO

Non-Hodgkin B-cell lymphoma (B-NHL) are aggressive lymphoid malignancies that develop in patients due to oncogenic activation, chemo-resistance, and immune evasion. Tumor biopsies show that B-NHL frequently uses several immune escape strategies, which has hindered the development of checkpoint blockade immunotherapies in these diseases. To gain a better understanding of B-NHL immune editing, we hypothesized that the transcriptional hallmarks of immune escape associated with these diseases could be identified from the meta-analysis of large series of microarrays from B-NHL biopsies. Thus, 1446 transcriptome microarrays from seven types of B-NHL were downloaded and assembled from 33 public Gene Expression Omnibus (GEO) datasets, and a method for scoring the transcriptional hallmarks in single samples was developed. This approach was validated by matching scores to phenotypic hallmarks of B-NHL such as proliferation, signaling, metabolic activity, and leucocyte infiltration. Through this method, we observed a significant enrichment of 33 immune escape genes in most diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL) samples, with fewer in mantle cell lymphoma (MCL) and marginal zone lymphoma (MZL) samples. Comparing these gene expression patterns with overall survival data evidenced four stages of cancer immune editing in B-NHL: non-immunogenic tumors (stage 1), immunogenic tumors without immune escape (stage 2), immunogenic tumors with immune escape (stage 3), and fully immuno-edited tumors (stage 4). This model complements the standard international prognostic indices for B-NHL and proposes that immune escape stages 3 and 4 (76% of the FL and DLBCL samples in this data set) identify patients relevant for checkpoint blockade immunotherapies.

19.
Br J Cancer ; 113(11): 1590-8, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26512875

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies with a mortality that is almost identical to incidence. Because early detected PDAC is potentially curable, blood-based biomarkers that could detect currently developing neoplasia would improve patient survival and management. PDAC develops from pancreatic intraepithelial neoplasia (PanIN) lesions, graded from low grade (PanIN1) to high grade (PanIN3). We made the hypothesis that specific proteomic signatures from each precancerous stage exist and are detectable in plasma. METHODS: We explored the peptide profiles of microdissected PanIN cells and of plasma samples corresponding to the different PanIN grade from genetically engineered mouse models of PDAC using capillary electrophoresis coupled to mass spectrometry (CE-MS) and Chip-MS/MS. RESULTS: We successfully characterised differential peptides profiles from PanIN microdissected cells. We found that plasma from tumor-bearing mice and age-matched controls exhibit discriminative peptide signatures. We also determined plasma peptide signatures corresponding to low- and high-grade precancerous step present in the mice pancreas using the two mass spectrometry technologies. Importantly, we identified biomarkers specific of PanIN3. CONCLUSIONS: We demonstrate that benign and advanced PanIN lesions display distinct plasma peptide patterns. This strongly supports the perspectives of developing a non-invasive screening test for prediction and early detection of PDAC.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma in Situ/sangue , Carcinoma Ductal Pancreático/sangue , Proteínas de Neoplasias/sangue , Neoplasias Pancreáticas/sangue , Peptídeos/sangue , Lesões Pré-Cancerosas/sangue , Animais , Biomarcadores Tumorais/análise , Carcinoma in Situ/química , Carcinoma in Situ/patologia , Carcinoma Ductal Pancreático/química , Modelos Animais de Doenças , Camundongos , Proteínas de Neoplasias/análise , Neoplasias Pancreáticas/química , Peptídeos/análise , Lesões Pré-Cancerosas/química , Lesões Pré-Cancerosas/patologia , Análise Serial de Proteínas , Proteoma/análise
20.
Eur J Immunol ; 45(12): 3313-23, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26460927

RESUMO

Cyclic dinucleotides, a class of microbial messengers, have been recently identified in bacteria, but their activity in humans remains largely unknown. Here, we have studied the function of cyclic dinucleotides in humans. We found that c-di-AMP and cGAMP, two adenosine-based cyclic dinucleotides, activated T lymphocytes in an unusual manner through monocyte cell death. c-di-AMP and cGAMP induced the selective apoptosis of human monocytes, and T lymphocytes were activated by the direct contact with these dying monocytes. The ensuing T-cell response comprised cell-cycle exit, phenotypic maturation into effector memory cells and proliferation arrest, but not cell death. This quiescence was transient since T cells remained fully responsive to further restimulation. Together, our results depict a novel activation pattern for human T lymphocytes: a transient quiescence induced by c-di-AMP- or cGAMP-primed apoptotic monocytes.


Assuntos
Fosfatos de Dinucleosídeos/farmacologia , Monócitos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 1/metabolismo , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/enzimologia , Nucleotídeos Cíclicos/farmacologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA