Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(5): e14333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493500

RESUMO

PURPOSE: Left ventricle (LV) regional myocardial displacement due to cardiac motion was assessed using cardiovascular magnetic resonance (CMR) cine images to establish region-specific margins for cardiac radioablation treatments. METHODS: CMR breath-hold cine images and LV myocardial tissue contour points were analyzed for 200 subjects, including controls (n = 50) and heart failure (HF) patients with preserved ejection fraction (HFpEF, n = 50), mid-range ejection fraction (HFmrEF, n = 50), and reduced ejection fraction (HFrEF, n = 50). Contour points were divided into segments according to the 17-segment model. For each patient, contour point displacements were determined for the long-axis (all 17 segments) and short-axis (segments 1-12) directions. Mean overall, tangential (longitudinal or circumferential), and normal (radial) displacements were calculated for the 17 segments and for each segment level. RESULTS: The greatest overall motion was observed in the control group-long axis: 4.5 ± 1.2 mm (segment 13 [apical anterior] epicardium) to 13.8 ± 3.0 mm (segment 6 [basal anterolateral] endocardium), short axis: 4.3 ± 0.8 mm (segment 9 [mid inferoseptal] epicardium) to 11.5 ± 2.3 mm (segment 1 [basal anterior] endocardium). HF patients exhibited lesser motion, with the smallest overall displacements observed in the HFrEF group-long axis: 4.3 ± 1.7 mm (segment 13 [apical anterior] epicardium) to 10.6 ± 3.4 mm (segment 6 [basal anterolateral] endocardium), short axis: 3.9 ± 1.3 mm (segment 8 [mid anteroseptal] epicardium) to 7.4 ± 2.8 mm (segment 1 [basal anterior] endocardium). CONCLUSIONS: This analysis provides an estimate of epicardial and endocardial displacement for the 17 segments of the LV for patients with normal and impaired LV function. This reference data can be used to establish treatment planning margin guidelines for cardiac radioablation. Smaller margins may be used for patients with higher degree of impaired heart function, depending on the LV segment.


Assuntos
Insuficiência Cardíaca , Ventrículos do Coração , Imagem Cinética por Ressonância Magnética , Humanos , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Masculino , Feminino , Imagem Cinética por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Insuficiência Cardíaca/fisiopatologia , Insuficiência Cardíaca/diagnóstico por imagem , Idoso , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Estudos de Casos e Controles , Movimento , Dosagem Radioterapêutica , Processamento de Imagem Assistida por Computador/métodos
2.
Biomed Phys Eng Express ; 10(2)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359447

RESUMO

Purpose.Cardiac radiosurgery is a non-invasive treatment modality for ventricular tachycardia, where a linear accelerator is used to irradiate the arrhythmogenic region within the heart. In this work, cardiac magnetic resonance (CMR) cine images were used to quantify left ventricle (LV) segment-specific motion during the cardiac cycle and to assess potential advantages of cardiac-gated radiosurgery.Methods.CMR breath-hold cine images and LV contour points were analyzed for 50 controls and 50 heart failure patients with reduced ejection fraction (HFrEF, EF < 40%). Contour points were divided into anatomic segments according to the 17-segment model, and each segment was treated as a hypothetical treatment target. The optimum treatment window (one fifth of the cardiac cycle) was determined where segment centroid motion was minimal, then the maximum centroid displacement and treatment area were determined for the full cardiac cycle and for the treatment window. Mean centroid displacement and treatment area reductions with cardiac gating were determined for each of the 17 segments.Results.Full motion segment centroid displacements ranged between 6-14 mm (controls) and 4-11 mm (HFrEF). Full motion treatment areas ranged between 129-715 mm2(controls) and 149-766 mm2(HFrEF). With gating, centroid displacements were reduced to 1 mm (controls and HFrEF), while treatment areas were reduced to 62-349 mm2(controls) and 83-393 mm2(HFrEF). Relative treatment area reduction ranged between 38%-53% (controls) and 26%-48% (HFrEF).Conclusion.This data demonstrates that cardiac cycle motion is an important component of overall target motion and varies depending on the anatomic cardiac segment. Accounting for cardiac cycle motion, through cardiac gating, has the potential to significantly reduce treatment volumes for cardiac radiosurgery.


Assuntos
Insuficiência Cardíaca , Radiocirurgia , Humanos , Ventrículos do Coração/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Radiocirurgia/métodos , Volume Sistólico , Coração/diagnóstico por imagem
3.
Med Phys ; 47(8): 3567-3572, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32415856

RESUMO

PURPOSE: Ventricular tachycardia (VT) is a rapid, abnormal heart rhythm that can lead to sudden cardiac death. Current treatment options include antiarrhythmic drug therapy and catheter ablation, both of which have only modest efficacy and have potential complications. Cardiac radiosurgery has the potential to be a noninvasive and efficient treatment option for VT. Cardiac motion, however, must be accounted for to ensure accurate dose delivery to the target region. Cardiac synchronized volumetric modulated arc therapy (CSVMAT) aims to minimize the dose delivered to normal tissues by synchronizing beam delivery with a cardiac signal, irradiating only during the quiescent intervals of the cardiac cycle (when heart motion is minimal) and adjusting the beam delivery speed in response to heart rate changes. METHODS: A CSVMAT plan was adapted from a conventional VMAT plan and delivered on a Varian TrueBeam linear accelerator. The original VMAT plan was divided into three interleaved CSVMAT phases, each consisting of alternating beam-on and beam-off segments synchronized to a sample heart rate. Trajectory log files were collected for the original VMAT and CSVMAT deliveries and the dose distributions were measured with Gafchromic EBT-XD film. RESULTS: Analysis of the trajectory log files showed successful synchronization with the sample cardiac signal. Film analysis comparing the original VMAT and CSVMAT dose distributions returned a gamma passing rate of 99.14% (2%/2 mm tolerance). CONCLUSIONS: The film results indicated excellent agreement between the dose distributions of the original and cardiac synchronized beam deliveries. This study demonstrates a proof of principle cardiac synchronization strategy for precise radiation treatment plan delivery and adjustment to a variable heart rate. The cardiac synchronized technique may be advantageous in radioablation for VT.


Assuntos
Ablação por Cateter , Radiocirurgia , Radioterapia de Intensidade Modulada , Arritmias Cardíacas , Humanos , Aceleradores de Partículas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Am J Respir Cell Mol Biol ; 62(3): 342-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31517509

RESUMO

Sphingomyelin synthase is responsible for the production of sphingomyelin (SGM), the second most abundant phospholipid in mammalian plasma, from ceramide, a major sphingolipid. Knowledge of the effects of cigarette smoke on SGM production is limited. In the present study, we examined the effect of chronic cigarette smoke on sphingomyelin synthase (SGMS) activity and evaluated how the deficiency of Sgms2, one of the two isoforms of mammalian SGMS, impacts pulmonary function. Sgms2-knockout and wild-type control mice were exposed to cigarette smoke for 6 months, and pulmonary function testing was performed. SGMS2-dependent signaling was investigated in these mice and in human monocyte-derived macrophages of nonsmokers and human bronchial epithelial (HBE) cells isolated from healthy nonsmokers and subjects with chronic obstructive pulmonary disease (COPD). Chronic cigarette smoke reduces SGMS activity and Sgms2 gene expression in mouse lungs. Sgms2-deficient mice exhibited enhanced airway and tissue resistance after chronic cigarette smoke exposure, but had similar degrees of emphysema, compared with smoke-exposed wild-type mice. Sgms2-/- mice had greater AKT phosphorylation, peribronchial collagen deposition, and protease activity in their lungs after smoke inhalation. Similarly, we identified reduced SGMS2 expression and enhanced phosphorylation of AKT and protease production in HBE cells isolated from subjects with COPD. Selective inhibition of AKT activity or overexpression of SGMS2 reduced the production of several matrix metalloproteinases in HBE cells and monocyte-derived macrophages. Our study demonstrates that smoke-regulated Sgms2 gene expression influences key COPD features in mice, including airway resistance, AKT signaling, and protease production.


Assuntos
Resistência das Vias Respiratórias/fisiologia , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Produtos do Tabaco/efeitos adversos , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Animais , Brônquios/citologia , Células Cultivadas , Ceramidas/metabolismo , Células Epiteliais , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Macrófagos/metabolismo , Metaloproteinases da Matriz/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Esfingomielinas/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/biossíntese , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/fisiologia
6.
Int J Chron Obstruct Pulmon Dis ; 14: 1305-1315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417248

RESUMO

Background: Viral infections are considered a major driving factor of chronic obstructive pulmonary disease (COPD) exacerbations and thus contribute to disease morbidity and mortality. Respiratory syncytial virus (RSV) is a frequently detected pathogen in the respiratory tract of COPD patients during an exacerbation. We previously demonstrated in a murine model that leukemia inhibitory factor (LIF) expression was increased in the lungs during RSV infection. Subduing LIF signaling in this model enhanced lung injury and airway hypersensitivity. In this study, we investigated lung LIF levels in COPD patient samples to determine the impact of disease status and cigarette smoke exposure on LIF expression. Materials and methods: Bronchoalveolar lavage fluid (BALF) was obtained from healthy never smokers, smokers, and COPD patients, by written informed consent. Human bronchial epithelial (HBE) cells were isolated from healthy never smokers and COPD patients, grown at the air-liquid interface and infected with RSV or stimulated with polyinosinic:polycytidylic acid (poly (i:c)). Mice were exposed to cigarette smoke daily for 6 months and were subsequently infected with RSV. LIF expression was profiled in all samples. Results: In human BALF, LIF protein was significantly reduced in both smokers and COPD patients compared to healthy never smokers. HBE cells isolated from COPD patients produced less LIF compared to never smokers during RSV infection or poly (i:c) stimulation. Animals exposed to cigarette smoke had reduced lung levels of LIF and its corresponding receptor, LIFR. Smoke-exposed animals had reduced LIF expression during RSV infection. Two possible factors for reduced LIF levels were increased LIF mRNA instability in COPD epithelia and proteolytic degradation of LIF protein by serine proteases. Conclusions: Cigarette smoke is an important modulator for LIF expression in the lungs. Loss of LIF expression in COPD could contribute to a higher degree of lung injury during virus-associated exacerbations.


Assuntos
Líquido da Lavagem Broncoalveolar/imunologia , Fumar Cigarros , Fator Inibidor de Leucemia/análise , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica , Mucosa Respiratória , Infecções por Vírus Respiratório Sincicial , Fumaça/efeitos adversos , Animais , Células Cultivadas/imunologia , Fumar Cigarros/imunologia , Fumar Cigarros/patologia , Modelos Animais de Doenças , Humanos , Exposição por Inalação , Camundongos , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/patologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Exacerbação dos Sintomas
7.
Am J Respir Crit Care Med ; 200(1): 51-62, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30641028

RESUMO

Rationale: CTSS (cathepsin S) is a cysteine protease that is observed at higher concentrations in BAL fluid and plasma of subjects with chronic obstructive pulmonary disease (COPD). Objectives: To investigate whether CTSS is involved in the pathogenesis of cigarette smoke-induced COPD and determine whether targeting upstream signaling could prevent the disease. Methods: CTSS expression was investigated in animal and human tissue and cell models of COPD. Ctss-/- mice were exposed to long-term cigarette smoke and forced oscillation and expiratory measurements were recorded. Animals were administered chemical modulators of PP2A (protein phosphatase 2A) activity. Measurements and Main Results: Here we observed enhanced CTSS expression and activity in mouse lungs after exposure to cigarette smoke. Ctss-/- mice were resistant to cigarette smoke-induced inflammation, airway hyperresponsiveness, airspace enlargements, and loss of lung function. CTSS expression was negatively regulated by PP2A in human bronchial epithelial cells isolated from healthy nonsmokers and COPD donors and in monocyte-derived macrophages. Modulating PP2A expression or activity, with silencer siRNA or a chemical inhibitor or activator, during acute smoke exposure in mice altered inflammatory responses and CTSS expression and activity in the lung. Enhancement of PP2A activity prevented chronic smoke-induced COPD in mice. Conclusions: Our study indicates that the decrease in PP2A activity that occurs in COPD contributes to elevated CTSS expression in the lungs and results in impaired lung function. Enhancing PP2A activity represents a feasible therapeutic approach to reduce CTSS activity and counter smoke-induced lung disease.


Assuntos
Catepsinas/metabolismo , Fumar Cigarros/metabolismo , Pulmão/metabolismo , Nicotiana , Proteína Fosfatase 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Animais , Brônquios/citologia , Estudos de Casos e Controles , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Inativação Gênica , Humanos , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Ácido Okadáico/farmacologia , Proteína Fosfatase 2/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Mucosa Respiratória/citologia
8.
Am J Respir Cell Mol Biol ; 59(6): 695-705, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30011381

RESUMO

Phosphatase activity of the major serine threonine phosphatase, protein phosphatase 2A (PP2A), is blunted in the airways of individuals with chronic obstructive pulmonary disease (COPD), which results in heightened inflammation and proteolytic responses. The objective of this study was to investigate how PP2A activity is modulated in COPD airways. PP2A activity and endogenous inhibitors of PP2A were investigated in animal and cell models of COPD. In primary human bronchial epithelial (HBE) cells isolated from smokers and donors with COPD, we observed enhanced expression of cancerous inhibitor of PP2A (CIP2A), an oncoprotein encoded by the KIAA1524 gene, compared with cells from nonsmokers. CIP2A expression was induced by chronic cigarette smoke exposure in mice that coincided with a reduction in PP2A activity, airspace enlargements, and loss of lung function, as determined by PP2A phosphatase activity, mean linear intercept analysis, and forced expiratory volume in 0.05 second/forced vital capacity. Modulating CIP2A expression in HBE cells by silencing RNA or chemically with erlotinib enhanced PP2A activity, reduced extracellular-signal-regulated kinase phosphorylation, and reduced the responses of matrix metalloproteinases 1 and 9 in HBE cells isolated from subjects with COPD. Enhanced epithelial growth factor receptor responses in cells from subjects with COPD were observed to modulate CIP2A expression levels. Our study indicates that chronic cigarette smoke induction of epithelial growth factor receptor signaling and CIP2A expression can impair PP2A responses that are associated with loss of lung function and enhancement of proteolytic responses. Augmenting PP2A activity by manipulating CIP2A expression may represent a feasible therapeutic approach to counter smoke-induced lung disease.


Assuntos
Autoantígenos/metabolismo , Fumar Cigarros/efeitos adversos , Exposição Ambiental/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Animais , Células Cultivadas , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Oncogênicas/metabolismo , Proteólise , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA