Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34504013

RESUMO

Islet transplantation for type 1 diabetes treatment has been limited by the need for lifelong immunosuppression regimens. This challenge has prompted the development of macroencapsulation devices (MEDs) to immunoprotect the transplanted islets. While promising, conventional MEDs are faced with insufficient transport of oxygen, glucose, and insulin because of the reliance on passive diffusion. Hence, these devices are constrained to two-dimensional, wafer-like geometries with limited loading capacity to maintain cells within a distance of passive diffusion. We hypothesized that convective nutrient transport could extend the loading capacity while also promoting cell viability, rapid glucose equilibration, and the physiological levels of insulin secretion. Here, we showed that convective transport improves nutrient delivery throughout the device and affords a three-dimensional capsule geometry that encapsulates 9.7-fold-more cells than conventional MEDs. Transplantation of a convection-enhanced MED (ceMED) containing insulin-secreting ß cells into immunocompetent, hyperglycemic rats demonstrated a rapid, vascular-independent, and glucose-stimulated insulin response, resulting in early amelioration of hyperglycemia, improved glucose tolerance, and reduced fibrosis. Finally, to address potential translational barriers, we outlined future steps necessary to optimize the ceMED design for long-term efficacy and clinical utility.


Assuntos
Encapsulamento de Células/métodos , Sistemas de Liberação de Medicamentos/métodos , Células Secretoras de Insulina/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Convecção , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Sistemas de Liberação de Medicamentos/instrumentação , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Ratos
2.
Elife ; 72018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30468428

RESUMO

DNA methylation plays an essential role in mammalian genomes and expression of the responsible enzymes is tightly controlled. Deregulation of the de novo DNA methyltransferase DNMT3B is frequently observed across cancer types, yet little is known about its ectopic genomic targets. Here, we used an inducible transgenic mouse model to delineate rules for abnormal DNMT3B targeting, as well as the constraints of its activity across different cell types. Our results explain the preferential susceptibility of certain CpG islands to aberrant methylation and point to transcriptional state and the associated chromatin landscape as the strongest predictors. Although DNA methylation and H3K27me3 are usually non-overlapping at CpG islands, H3K27me3 can transiently co-occur with DNMT3B-induced DNA methylation. Our genome-wide data combined with ultra-deep locus-specific bisulfite sequencing suggest a distributive activity of ectopically expressed Dnmt3b that leads to discordant CpG island hypermethylation and provides new insights for interpreting the cancer methylome.


Assuntos
Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/biossíntese , Metilação de DNA , Expressão Gênica , Proteínas Recombinantes/biossíntese , Animais , DNA (Citosina-5-)-Metiltransferases/genética , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica , Humanos , Camundongos Transgênicos , Neoplasias/patologia , Proteínas Recombinantes/genética , DNA Metiltransferase 3B
3.
Nat Struct Mol Biol ; 25(4): 327-332, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29531288

RESUMO

Cytosine methylation is widespread among organisms and essential for mammalian development. In line with early postulations of an epigenetic role in gene regulation, symmetric CpG methylation can be mitotically propagated over many generations with extraordinarily high fidelity. Here, we combine BrdU labeling and immunoprecipitation with genome-wide bisulfite sequencing to explore the inheritance of cytosine methylation onto newly replicated DNA in human cells. Globally, we observe a pronounced lag between the copying of genetic and epigenetic information in embryonic stem cells that is reconsolidated within hours to accomplish faithful mitotic transmission. Populations of arrested cells show a global reduction of lag-induced intermediate CpG methylation when compared to proliferating cells, whereas sites of transcription factor engagement appear cell-cycle invariant. Alternatively, the cancer cell line HCT116 preserves global epigenetic heterogeneity independently of cell-cycle arrest. Taken together, our data suggest that heterogeneous methylation largely reflects asynchronous proliferation, but is intrinsic to actively engaged cis-regulatory elements and cancer.


Assuntos
Citosina/química , Metilação de DNA , Ciclo Celular , Proliferação de Células , Ilhas de CpG , DNA/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Replicação do DNA , Células-Tronco Embrionárias/citologia , Epigênese Genética , Regulação da Expressão Gênica , Genoma Humano , Células HCT116 , Humanos , Masculino , Metilação , Mitose , Neurônios Motores/metabolismo , Neoplasias/genética , Análise de Sequência de RNA , Fatores de Transcrição/metabolismo , DNA Metiltransferase 3B
4.
Nat Genet ; 50(2): 250-258, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29358654

RESUMO

Transcription factors (TFs) direct developmental transitions by binding to target DNA sequences, influencing gene expression and establishing complex gene-regultory networks. To systematically determine the molecular components that enable or constrain TF activity, we investigated the genomic occupancy of FOXA2, GATA4 and OCT4 in several cell types. Despite their classification as pioneer factors, all three TFs exhibit cell-type-specific binding, even when supraphysiologically and ectopically expressed. However, FOXA2 and GATA4 can be distinguished by low enrichment at loci that are highly occupied by these factors in alternative cell types. We find that expression of additional cofactors increases enrichment at a subset of these sites. Finally, FOXA2 occupancy and changes to DNA accessibility can occur in G1-arrested cells, but subsequent loss of DNA methylation requires DNA replication.


Assuntos
DNA/metabolismo , Epigênese Genética/fisiologia , Redes Reguladoras de Genes/fisiologia , Fatores de Transcrição/metabolismo , Células A549 , Sítios de Ligação/genética , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Células Cultivadas , Biologia Computacional , DNA/genética , Epistasia Genética/fisiologia , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica , Genes de Troca , Células HEK293 , Células Hep G2 , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Fator 3 de Transcrição de Octâmero/metabolismo , Ligação Proteica
5.
Mol Genet Genomic Med ; 5(3): 261-268, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28546996

RESUMO

BACKGROUND: Campomelic dysplasia (CD) is a semilethal developmental disorder caused by mutations in and around SOX9. CD is characterized by multiple skeletal malformations including bending (campomelia) of long bones. Surviving patients frequently have the acampomelic form of CD (ACD). METHODS: This is a single case report on a patient with clinical and radiological features of ACD who has no mutation in the SOX9 protein-coding sequence nor a translocation with breakpoint in the SOX9 regulatory domain. We include functional studies of the novel mutant protein in vitro and in cultured cells. RESULTS: The patient was found to have a de novo heterozygous mutation c.-185G>A in the SOX9 5'UTR. The mutation creates an upstream translation start codon, uAUG, with a much better fit of its flanking sequence to the Kozak consensus than the wild-type AUG. By in vitro transcription-translation and transient transfection into COS-7 cells, we show that the uAUG leads to translation of a short peptide from a reading frame that terminates just after the wild-type AUG start codon. This results in reduced translation of the wild-type protein, compatible with the milder phenotype of the patient. CONCLUSION: Findings support the notion that more mildly affected, surviving CD/ACD patients carry mutant SOX9 alleles with residual expression of SOX9 wild-type protein. Although rarely described in human genetic disease and for the first time here for CD, mutations creating upstream AUG codons may be more common than generally assumed.

6.
Nat Biotechnol ; 33(11): 1182-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26501952

RESUMO

Research on human pluripotent stem cells has been hampered by the lack of a standardized, quantitative, scalable assay of pluripotency. We previously described an assay called ScoreCard that used gene expression signatures to quantify differentiation efficiency. Here we report an improved version of the assay based on qPCR that enables faster, more quantitative assessment of functional pluripotency. We provide an in-depth characterization of the revised signature panel (commercially available as the TaqMan hPSC Scorecard Assay) through embryoid body and directed differentiation experiments as well as a detailed comparison to the teratoma assay. We further show that the improved ScoreCard enables a wider range of applications, such as screening of small molecules, genetic perturbations and assessment of culture conditions. Our approach can be extended beyond stem cell applications to characterize and assess the utility of other cell types and lineages.


Assuntos
Diferenciação Celular/genética , Biologia Computacional/métodos , Corpos Embrioides/fisiologia , Células-Tronco Pluripotentes/fisiologia , Reação em Cadeia da Polimerase/métodos , Animais , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Humanos , Camundongos , Neoplasias Experimentais/patologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Teratoma/patologia
7.
Science ; 334(6057): 799-802, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-22076376

RESUMO

In the mammalian genome, 5'-CpG-3' dinucleotides are frequently methylated, correlating with transcriptional silencing. Genome-wide demethylation is thought to occur only twice during development, in primordial germ cells and in the pre-implantation embryo. These demethylation events are followed by de novo methylation, setting up a pattern inherited throughout development and modified only at tissue-specific loci. We studied DNA methylation in differentiating mouse erythroblasts in vivo by using genomic-scale reduced representation bisulfite sequencing (RRBS). Demethylation at the erythroid-specific ß-globin locus was coincident with global DNA demethylation at most genomic elements. Global demethylation was continuous throughout differentiation and required rapid DNA replication. Hence, DNA demethylation can occur globally during somatic cell differentiation, providing an experimental model for its study in development and disease.


Assuntos
Metilação de DNA , Eritroblastos/metabolismo , Eritropoese , Animais , Ilhas de CpG , Replicação do DNA , Fosfatos de Dinucleosídeos/metabolismo , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Fígado/embriologia , Região de Controle de Locus Gênico , Elementos Nucleotídeos Longos e Dispersos , Camundongos , Fase S , Análise de Sequência de DNA , Transcrição Gênica , Globinas beta/genética
8.
J Vis Exp ; (54)2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21847081

RESUMO

The study of erythropoiesis aims to understand how red cells are formed from earlier hematopoietic and erythroid progenitors. Specifically, the rate of red cell formation is regulated by the hormone erythropoietin (Epo), whose synthesis is triggered by tissue hypoxia. A threat to adequate tissue oxygenation results in a rapid increase in Epo, driving an increase in erythropoietic rate, a process known as the erythropoietic stress response. The resulting increase in the number of circulating red cells improves tissue oxygen delivery. An efficient erythropoietic stress response is therefore critical to the survival and recovery from physiological and pathological conditions such as high altitude, anemia, hemorrhage, chemotherapy or stem cell transplantation. The mouse is a key model for the study of erythropoiesis and its stress response. Mouse definitive (adult-type) erythropoiesis takes place in the fetal liver between embryonic days 12.5 and 15.5, in the neonatal spleen, and in adult spleen and bone marrow. Classical methods of identifying erythroid progenitors in tissue rely on the ability of these cells to give rise to red cell colonies when plated in Epo-containing semi-solid media. Their erythroid precursor progeny are identified based on morphological criteria. Neither of these classical methods allow access to large numbers of differentiation-stage-specific erythroid cells for molecular study. Here we present a flow-cytometric method of identifying and studying differentiation-stage-specific erythroid progenitors and precursors, directly in the context of freshly isolated mouse tissue. The assay relies on the cell-surface markers CD71, Ter119, and on the flow-cytometric 'forward-scatter' parameter, which is a function of cell size. The CD71/Ter119 assay can be used to study erythroid progenitors during their response to erythropoietic stress in vivo, for example, in anemic mice or mice housed in low oxygen conditions. It may also be used to study erythroid progenitors directly in the tissues of genetically modified adult mice or embryos, in order to assess the specific role of the modified molecular pathway in erythropoiesis.


Assuntos
Antígenos CD/análise , Células Precursoras Eritroides/citologia , Eritropoese/fisiologia , Citometria de Fluxo/métodos , Receptores da Transferrina/análise , Animais , Células Precursoras Eritroides/química , Feminino , Masculino , Camundongos , Gravidez
9.
J Biol Chem ; 286(19): 16758-67, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454573

RESUMO

Survivin is a multifunctional protein with essential roles in cell division and inhibition of apoptosis, but the molecular underpinnings of its cytoprotective properties are poorly understood. Here we show that homozygous deletion of the aryl hydrocarbon receptor-interacting protein (AIP), a survivin-associated immunophilin, causes embryonic lethality in mice by embryonic day 13.5-14, increased apoptosis of Ter119(-)/CD71(-) early erythropoietic progenitors, and loss of survivin expression in its cytosolic and mitochondrial compartments in vivo. In import assays using recombinant proteins, AIP directly mediated the import of survivin to mitochondria, thus enabling its anti-apoptotic function, whereas a survivin 1-141 mutant that does not bind AIP was not imported to mitochondria and failed to inhibit apoptosis. AIP-directed mitochondrial import of survivin did not affect cell division, was independent of the organelle transmembrane potential, did not require the chaperone Heat Shock Protein 90 (Hsp90), and was inhibited by cytosolic factor(s) present in normal cells. shRNA knockdown of the mitochondrial import receptor Tom20 abolished mitochondrial import of survivin and sensitized tumor cells to apoptosis, whereas silencing of Tom70 had no effect. Therefore, an AIP-Tom20 recognition contributes to cell survival in development and cancer by mediating the mitochondrial import of survivin.


Assuntos
Apoptose , Proteínas Inibidoras de Apoptose/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/química , Mitocôndrias/metabolismo , Proteínas Repressoras/metabolismo , Animais , Transporte Biológico , Citosol/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Homozigoto , Humanos , Camundongos , Camundongos Knockout , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Survivina , Fatores de Tempo
10.
PLoS Biol ; 8(9)2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20877475

RESUMO

Hematopoietic progenitors undergo differentiation while navigating several cell division cycles, but it is unknown whether these two processes are coupled. We addressed this question by studying erythropoiesis in mouse fetal liver in vivo. We found that the initial upregulation of cell surface CD71 identifies developmentally matched erythroblasts that are tightly synchronized in S-phase. We show that DNA replication within this but not subsequent cycles is required for a differentiation switch comprising rapid and simultaneous committal transitions whose precise timing was previously unknown. These include the onset of erythropoietin dependence, activation of the erythroid master transcriptional regulator GATA-1, and a switch to an active chromatin conformation at the ß-globin locus. Specifically, S-phase progression is required for the formation of DNase I hypersensitive sites and for DNA demethylation at this locus. Mechanistically, we show that S-phase progression during this key committal step is dependent on downregulation of the cyclin-dependent kinase p57(KIP2) and in turn causes the downregulation of PU.1, an antagonist of GATA-1 function. These findings therefore highlight a novel role for a cyclin-dependent kinase inhibitor in differentiation, distinct to their known function in cell cycle exit. Furthermore, we show that a novel, mutual inhibition between PU.1 expression and S-phase progression provides a "synchromesh" mechanism that "locks" the erythroid differentiation program to the cell cycle clock, ensuring precise coordination of critical differentiation events.


Assuntos
Ciclo Celular , Eritropoese , Proteínas Proto-Oncogênicas/metabolismo , Fase S , Transativadores/metabolismo , Animais , Antígenos CD/metabolismo , Cromatina/metabolismo , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Metilação de DNA , Replicação do DNA , Regulação para Baixo , Camundongos , Receptores da Transferrina/metabolismo
11.
PLoS Biol ; 5(10): e252, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17896863

RESUMO

Tissue development is regulated by signaling networks that control developmental rate and determine ultimate tissue mass. Here we present a novel computational algorithm used to identify regulatory feedback and feedforward interactions between progenitors in developing erythroid tissue. The algorithm makes use of dynamic measurements of red cell progenitors between embryonic days 12 and 15 in the mouse. It selects for intercellular interactions that reproduce the erythroid developmental process and endow it with robustness to external perturbations. This analysis predicts that negative autoregulatory interactions arise between early erythroblasts of similar maturation stage. By studying embryos mutant for the death receptor FAS, or for its ligand, FASL, and by measuring the rate of FAS-mediated apoptosis in vivo, we show that FAS and FASL are pivotal negative regulators of fetal erythropoiesis, in the manner predicted by the computational model. We suggest that apoptosis in erythroid development mediates robust homeostasis regulating the number of red blood cells reaching maturity.


Assuntos
Eritrócitos/citologia , Eritropoese/fisiologia , Proteína Ligante Fas/metabolismo , Feto/metabolismo , Homeostase/fisiologia , Receptor fas/metabolismo , Algoritmos , Animais , Apoptose/fisiologia , Diferenciação Celular , Separação Celular , Eritrócitos/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Retroalimentação Fisiológica , Feto/embriologia , Citometria de Fluxo , Fígado/embriologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
12.
Blood ; 108(1): 123-33, 2006 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-16527892

RESUMO

Erythropoietin (Epo) is the principal regulator of the erythropoietic response to hypoxic stress, through its receptor, EpoR. The EpoR signals mediating the stress response are largely unknown, and the spectrum of progenitors that are stress responsive is not fully defined. Here, we used flow cytometry to identify stress-responsive Ter119+CD71highFSChigh early erythroblast subsets in vivo. In the mouse spleen, an erythropoietic reserve organ, early erythroblasts were present at lower frequencies and were undergoing higher rates of apoptosis than equivalent cells in bone marrow. A high proportion of splenic early erythroblasts coexpressed the death receptor Fas, and its ligand, FasL. Fas-positive early erythroblasts were significantly more likely to coexpress annexin V than equivalent, Fas-negative cells, suggesting that Fas mediates early erythroblast apoptosis in vivo. We examined several mouse models of erythropoietic stress, including erythrocytosis and beta-thalassemia. We found a dramatic increase in the frequency of splenic early erythroblasts that correlated with down-regulation of Fas and FasL from their cell surface. Further, a single injection of Epo specifically suppressed early erythroblast Fas and FasL mRNA and cell-surface expression. Therefore, Fas and FasL are negative regulators of erythropoiesis. Epo-mediated suppression of erythroblast Fas and FasL is a novel stress response pathway that facilitates erythroblast expansion in vivo.


Assuntos
Eritroblastos/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Eritropoetina/farmacologia , Proteína Ligante Fas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Receptor fas/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Eritroblastos/metabolismo , Eritropoetina/administração & dosagem , Proteína Ligante Fas/genética , Proteína Ligante Fas/fisiologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Transgênicos , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Receptor fas/genética , Receptor fas/fisiologia
13.
Hum Genet ; 117(1): 43-53, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15806394

RESUMO

Campomelic dysplasia (CD; MIM 114290), an autosomal dominant skeletal malformation syndrome with XY sex reversal, is caused by heterozygous de novo mutations in and around the SOX9 gene on 17q. We report a patient with typical signs of CD, including sex reversal, who was, surprisingly, homozygous for the nonsense mutation Y440X. Since neither parent carried the Y440X mutation, possible mechanisms explaining the homozygous situation were a de novo mutation followed by uniparental isodisomy, somatic crossing over, or gene conversion. As the patient was heterozygous for six microsatellite markers flanking SOX9, uniparental isodisomy and somatic crossing over were excluded. Analysis of intragenic single-nucleotide polymorphisms suggested that the homozygous mutation arose by a mitotic gene conversion event involving exchange of at least 440 nucleotides and at most 2,208 nucleotides between a de novo mutant maternal allele and a wild-type paternal allele. Analysis of cloned alleles showed that homozygous mutant cells constituted about 80% of the leukocyte cell population of the patient, whereas about 20% were heterozygous mutant cells. Heterozygous Y440X mutations, previously described in three CD cases, have been identified in seven additional cases, thus constituting the most frequent recurrent mutations in SOX9. These patients frequently have a milder phenotype with longer survival, possibly because of the retention of some transactivation activity of the mutant protein on SOX9 target genes, as shown by cell transfection experiments. The fact that the patient survived for 3 months may thus be explained by homozygosity for a hypomorphic rather than a complete loss-of-function allele, in combination with somatic mosaicism. This is, to our knowledge, the first report of mitotic gene conversion of a wild-type allele by a de novo mutant allele in humans.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Conversão Gênica , Proteínas de Grupo de Alta Mobilidade/genética , Aberrações dos Cromossomos Sexuais , Fatores de Transcrição/genética , Anormalidades Múltiplas , Cromossomos Humanos Par 17 , Códon sem Sentido , Transtornos do Desenvolvimento Sexual , Evolução Fatal , Feminino , Humanos , Recém-Nascido , Padrões de Herança , Cariotipagem , Repetições de Microssatélites , Mitose , Mosaicismo , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição SOX9 , Diferenciação Sexual
14.
Am J Hum Genet ; 76(4): 663-71, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15717285

RESUMO

Previously, our group reported a five-generation family in which a balanced t(13;17) translocation is associated with a spectrum of skeletal abnormalities, including Robin sequence, hypoplastic scapulae, and a missing pair of ribs. Using polymerase chain reaction (PCR) with chromosome-specific markers to analyze DBA from somatic cell hybrids containing the derivative translocation chromosomes, we narrowed the breakpoint on each chromosome. Subsequent sequencing of PCR products spanning the breakpoints identified the breaks precisely. The chromosome 17 breakpoint maps approximately 932 kb upstream of the sex-determining region Y (SRY)-related high-mobility group box gene (SOX) within a noncoding transcript represented by two IMAGE cDNA clones. A growing number of reports have implicated chromosome 17 breakpoints at a distance of up to 1 Mb from SOX9 in some cases of campomelic dysplasia (CD). Although this multigeneration family has a disorder that shares some features with CD, their phenotype is significantly milder than any reported cases of (nonmosaic) CD. Therefore, this case may represent an etiologically distinct skeletal dysplasia or may be an extremely mild familial example of CD, caused by the most proximal translocation breakpoint from SOX9 reported to date. In addition, we have refined the breakpoint in a acampomelic CD case described elsewhere and have found that it lies approximately 900 kb upstream of SOX9.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Cromossomos Humanos Par 17 , Proteínas de Grupo de Alta Mobilidade/genética , Fatores de Transcrição/genética , Sequência de Bases , Quebra Cromossômica , Mapeamento Cromossômico , Humanos , Masculino , Dados de Sequência Molecular , Fatores de Transcrição SOX9 , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA