Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(W1): W108-W115, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38795067

RESUMO

The recognized importance of mutational spectra in molecular evolution is yet to be fully exploited beyond human cancer studies and model organisms. The wealth of intraspecific polymorphism data in the GenBank repository, covering a broad spectrum of genes and species, presents an untapped opportunity for detailed mutational spectrum analysis. Existing methods fall short by ignoring intermediate substitutions on the inner branches of phylogenetic trees and lacking the capability for cross-species mutational comparisons. To address these challenges, we present the NeMu pipeline, available at https://nemu-pipeline.com, a tool grounded in phylogenetic principles designed to provide comprehensive and scalable analysis of mutational spectra. Utilizing extensive sequence data from numerous available genome projects, NeMu rapidly and accurately reconstructs the neutral mutational spectrum. This tool, facilitating the reconstruction of gene- and species-specific mutational spectra, contributes to a deeper understanding of evolutionary mechanisms across the broad spectrum of known species.


Assuntos
Evolução Molecular , Mutação , Filogenia , Software , Humanos , Animais
2.
Sci Rep ; 12(1): 577, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022435

RESUMO

People living with human immunodeficiency virus (PLWH) have significantly increased risk for cardiovascular disease in part due to inflammation and immune dysregulation. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a greater prevalence of CHIP. We searched for CHIP in multi-ethnic cases from the Swiss HIV Cohort Study (SHCS, n = 600) and controls from the Atherosclerosis Risk in the Communities study (ARIC, n = 8111) from blood DNA-derived exome sequences. We observed that HIV is associated with a twofold increase in CHIP prevalence, both in the whole study population and in a subset of 230 cases and 1002 matched controls selected by propensity matching to control for demographic imbalances (SHCS 7%, ARIC 3%, p = 0.005). We also observed that ASXL1 is the most commonly mutated CHIP-associated gene in PLWH. Our results suggest that CHIP may contribute to the excess cardiovascular risk observed in PLWH.


Assuntos
Hematopoiese Clonal , Infecções por HIV/complicações , Adulto , Estudos de Casos e Controles , Feminino , Infecções por HIV/genética , Infecções por HIV/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
3.
medRxiv ; 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33173934

RESUMO

People living with human immunodeficiency virus (PLWH) have significantly increased risk for cardiovascular disease in part due to inflammation and immune dysregulation. Clonal hematopoiesis of indeterminate potential (CHIP), the age-related acquisition and expansion of hematopoietic stem cells due to leukemogenic driver mutations, increases risk for both hematologic malignancy and coronary artery disease (CAD). Since increased inflammation is hypothesized to be both a cause and consequence of CHIP, we hypothesized that PLWH have a greater prevalence of CHIP. We searched for CHIP in multi-ethnic cases from the Swiss HIV Cohort Study (SHCS, n=600) and controls from the Atherosclerosis Risk in the Communities study (ARIC, n=8,111) from blood DNA-derived exome sequences. We observed that HIV is associated with increased CHIP prevalence, both in the whole study population and in a subset of 230 cases and 1002 matched controls selected by propensity matching to control for demographic imbalances (SHCS 7%, ARIC 3%, p=0.005). Additionally, unlike in ARIC, ASXL1 was the most commonly implicated mutated CHIP gene. We propose that CHIP may be one mechanism through which PLWH are at increased risk for CAD. Larger prospective studies should evaluate the hypothesis that CHIP contributes to the excess cardiovascular risk in PLWH.

4.
Cells ; 8(5)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075887

RESUMO

Mitochondrial DNA (mtDNA) encodes core subunits of oxidative phosphorylation complexes and, as a result of intricate regulatory crosstalk between nuclear and mitochondrial genomes, the total number of mtDNA copies fits the requirements of each cell type. Deviations from the physiological number of mtDNA copies are expected to be deleterious and might cause some inherited diseases and normal ageing. We studied 46 obese patients with type 2 diabetes (T2DM) one year after a laparoscopic sleeve gastrectomy (LSG) and Roux-en-Y gastric bypass (RYGB). The results were compared with normal-weight patients without T2DM (control group 1) (body mass index (BMI) = 22.5 ± 3.01 kg/m2) and patients with obesity without T2DM (control group 2) (BMI = 36 ± 3.45 kg/m2). We detected an increase of mtDNA copy number in the cells of the buffy coat obtained from peripheral blood, sampled one year after bariatric surgery. We also found that average mtDNA copy number as well as its dynamics (before and after the surgery) are gender-specific. To the best of our knowledge, this is the first evidence for the restoration of mtDNA copy number in obese patients after LSG and RYGB.


Assuntos
Índice de Massa Corporal , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Obesidade/genética , Caracteres Sexuais , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/cirurgia
5.
Curr Opin Genet Dev ; 38: 127-132, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27497229

RESUMO

The mtDNA mutator mouse lacks the proofreading capacity of the sole mtDNA polymerase, leading to accumulation of somatic mtDNA mutations, and a profound premature aging phenotype including elevated oxidative stress and apoptosis, and reduced mitochondrial function. We have previously reported that endurance exercise alleviates the aging phenotype in the mutator mice, reduces oxidative stress, and enhances mitochondrial biogenesis. Here we summarize our findings, with the emphasis on the central role of p53 in these adaptations. We demonstrate that mtDNA in sedentary and exercised PolG mice carry similar amounts of mutations in muscle, but in addition to that sedentary mice have more non-mutational damage, which is mitigated by exercise. It follows therefore that the profound alleviation of the mtDNA mutator phenotype in muscle by exercise may not require a reduction in mtDNA mutational load, but rather a decrease of mtDNA damage and/or oxidative stress. We further hypothesize that the observed 'alleviation without a reduction of mutational load' implies that the oxidative stress in PolG muscle is maintained, at least in part, by the 'malicious cycle', a hypothetical positive feedback potentially driven by the 'transcriptional mutagenesis', that is the conversion of chemically modified nucleotides into mutant RNA bases by the mitochondrial RNA polymerase.


Assuntos
Senilidade Prematura/genética , DNA Mitocondrial/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Proteína Supressora de Tumor p53/genética , Senilidade Prematura/patologia , Animais , Apoptose/genética , Dano ao DNA/genética , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Camundongos , Músculo Esquelético/metabolismo , Mutação , Estresse Oxidativo/genética , Condicionamento Físico Animal
6.
Nat Genet ; 48(4): 398-406, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26950094

RESUMO

Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.


Assuntos
Carcinoma Basocelular/genética , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/genética , Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinogênese/genética , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/patologia , Análise Mutacional de DNA , Progressão da Doença , Exoma , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Humanos , Mutação , Piridinas/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Transcriptoma
7.
Genome Res ; 26(2): 174-82, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26755635

RESUMO

APOBEC3A and APOBEC3B, cytidine deaminases of the APOBEC family, are among the main factors causing mutations in human cancers. APOBEC deaminates cytosines in single-stranded DNA (ssDNA). A fraction of the APOBEC-induced mutations occur as clusters ("kataegis") in single-stranded DNA produced during repair of double-stranded breaks (DSBs). However, the properties of the remaining 87% of nonclustered APOBEC-induced mutations, the source and the genomic distribution of the ssDNA where they occur, are largely unknown. By analyzing genomic and exomic cancer databases, we show that >33% of dispersed APOBEC-induced mutations occur on the lagging strand during DNA replication, thus unraveling the major source of ssDNA targeted by APOBEC in cancer. Although methylated cytosine is generally more mutation-prone than nonmethylated cytosine, we report that methylation reduces the rate of APOBEC-induced mutations by a factor of roughly two. Finally, we show that in cancers with extensive APOBEC-induced mutagenesis, there is almost no increase in mutation rates in late replicating regions (contrary to other cancers). Because late-replicating regions are depleted in exons, this results in a 1.3-fold higher fraction of mutations residing within exons in such cancers. This study provides novel insight into the APOBEC-induced mutagenesis and describes the peculiarity of the mutational processes in cancers with the signature of APOBEC-induced mutations.


Assuntos
Citidina Desaminase/fisiologia , Neoplasias/genética , Citosina/metabolismo , Metilação de DNA , Análise Mutacional de DNA , Replicação do DNA , Exoma , Humanos , Mutagênese , Mutação , Taxa de Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA