Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523968

RESUMO

Little is known about the mechanisms regulating the transition of circulating monocytes into pro- or anti-inflammatory macrophages in chronic inflammation. Here, we took advantage of our novel mouse model of rheumatoid arthritis, in which Flip is deleted under the control of a CD11c promoter (HUPO mice). During synovial tissue homeostasis, both monocyte-derived F4/80int and self-renewing F4/80hi tissue-resident, macrophage populations were identified. However, in HUPO mice, decreased synovial tissue-resident macrophages preceded chronic arthritis, opened a niche permitting the influx of activated monocytes, with impaired ability to differentiate into F4/80hi tissue-resident macrophages. In contrast, Flip-replete monocytes entered the vacated niche and differentiated into tissue-resident macrophages, which suppressed arthritis. Genes important in macrophage tissue residency were reduced in HUPO F4/80hi macrophages and in leukocyte-rich rheumatoid arthritis synovial tissue monocytes. Our observations demonstrate that the macrophage tissue-resident niche is necessary for suppression of chronic inflammation and may contribute to the pathogenesis of rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Membrana Sinovial , Animais , Artrite Reumatoide/etiologia , Artrite Reumatoide/patologia , Homeostase , Inflamação/patologia , Macrófagos/patologia , Camundongos , Membrana Sinovial/patologia
2.
Arthritis Rheumatol ; 70(6): 841-854, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29439295

RESUMO

OBJECTIVE: Currently, there are no reliable biomarkers for predicting therapeutic response in patients with rheumatoid arthritis (RA). The synovium may unlock critical information for determining efficacy, since a reduction in the numbers of sublining synovial macrophages remains the most reproducible biomarker. Thus, a clinically actionable method for the collection of synovial tissue, which can be analyzed using high-throughput strategies, must become a reality. This study was undertaken to assess the feasibility of utilizing synovial biopsies as a precision medicine-based approach for patients with RA. METHODS: Rheumatologists at 6 US academic sites were trained in minimally invasive ultrasound-guided synovial tissue biopsy. Biopsy specimens obtained from patients with RA and synovial tissue from patients with osteoarthritis (OA) were subjected to histologic analysis, fluorescence-activated cell sorting, and RNA sequencing (RNA-seq). An optimized protocol for digesting synovial tissue was developed to generate high-quality RNA-seq libraries from isolated macrophage populations. Associations were determined between macrophage transcriptional profiles and clinical parameters in RA patients. RESULTS: Patients with RA reported minimal adverse effects in response to synovial biopsy. Comparable RNA quality was observed from synovial tissue and isolated macrophages between patients with RA and patients with OA. Whole tissue samples from patients with RA demonstrated a high degree of transcriptional heterogeneity. In contrast, the transcriptional profile of isolated RA synovial macrophages highlighted different subpopulations of patients and identified 6 novel transcriptional modules that were associated with disease activity and therapy. CONCLUSION: Performance of synovial tissue biopsies by rheumatologists in the US is feasible and generates high-quality samples for research. Through the use of cutting-edge technologies to analyze synovial biopsy specimens in conjunction with corresponding clinical information, a precision medicine-based approach for patients with RA is attainable.


Assuntos
Artrite Reumatoide/patologia , Macrófagos/metabolismo , Membrana Sinovial/patologia , Transcrição Gênica , Ultrassonografia/métodos , Idoso , Artrite Reumatoide/genética , Feminino , Humanos , Biópsia Guiada por Imagem/métodos , Masculino , Pessoa de Meia-Idade
3.
J Immunol ; 200(1): 130-138, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150565

RESUMO

The reduction of synovial tissue macrophages is a reliable biomarker for clinical improvement in patients with rheumatoid arthritis (RA), and macrophages are reduced in synovial tissue shortly after initiation of TNF inhibitors. The mechanism for this initial response is unclear. These studies were performed to identify the mechanisms responsible for the initial reduction of macrophages following TNF inhibition, positing that efflux to draining lymph nodes was involved. RA synovial tissue and synovial fluid macrophages expressed CCR7, which was increased in control macrophages following incubation with TNF-α. Human TNF transgenic (hTNF-Tg) mice were treated with infliximab after development of arthritis. Ankles were harvested and examined by histology, immunohistochemistry, quantitative RT-PCR, ELISA, and flow cytometry. hTNF-Tg mice treated with infliximab demonstrated significant clinical and histologic improvement 3 d after the initiation of therapy, at which time Ly6C+ macrophages were significantly reduced in the ankles. However, no evidence was identified to support a role of macrophage efflux to draining lymph nodes following treatment with infliximab. In contrast, apoptosis of Ly6C+ macrophages in the ankles and popliteal lymph nodes, decreased migration of monocytes into the ankles, and a reduction of CCL2 were identified following the initiation of infliximab. These observations demonstrate that Ly6C+ macrophage apoptosis and decreased ingress of circulating monocytes into the joint are responsible for the initial reduction of macrophages following infliximab treatment in hTNF-Tg mice.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Infliximab/uso terapêutico , Macrófagos/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Linhagem Celular , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Quimiotaxia/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores CCR7/genética , Receptores CCR7/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
4.
Arthritis Rheumatol ; 69(9): 1762-1771, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28511285

RESUMO

OBJECTIVE: Macrophages are critical in the pathogenesis of rheumatoid arthritis (RA). We recently demonstrated that FLIP is necessary for the differentiation and/or survival of macrophages. We also showed that FLIP is highly expressed in RA synovial macrophages. This study was undertaken to determine if a reduction in FLIP in mouse macrophages reduces synovial tissue macrophages and ameliorates serum-transfer arthritis. METHODS: Mice with Flip deleted in myeloid cells (Flipf/f LysMc/+ mice) and littermate controls were used. Arthritis was induced by intraperitoneal injection of K/BxN serum. Disease severity was evaluated by clinical score and change in ankle thickness, and joints were examined by histology and immunohistochemistry. Cells were isolated from the ankles and bone marrow of the mice and examined by flow cytometry, real-time quantitative reverse transcriptase-polymerase chain reaction, or Western blotting. RESULTS: In contrast to expectations, Flipf/f LysMc/+ mice developed more severe arthritis early in the clinical course, but peak arthritis was attenuated and the resolution phase more complete than in control mice. Prior to the induction of serum-transfer arthritis, the number of tissue-resident macrophages was reduced. On day 9 after arthritis induction, the number of F4/80high macrophages in the joints of the Flipf/f LysMc/+ mice was not decreased, but increased. FLIP was reduced in the F4/80high macrophages in the ankles of the Flipf/f LysMc/+ mice, while F4/80high macrophages expressed an antiinflammatory phenotype in both the Flipf/f LysMc/+ and control mice. CONCLUSION: Our observations suggest that reducing FLIP in macrophages by increasing the number of antiinflammatory macrophages may be an effective therapeutic approach to suppress inflammation, depending on the disease stage.


Assuntos
Artrite Experimental/genética , Artrite Reumatoide/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Macrófagos/metabolismo , Células Mieloides/metabolismo , Animais , Tornozelo/patologia , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença , Membrana Sinovial/citologia
5.
Autophagy ; 13(2): 285-301, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27929705

RESUMO

We previously observed that SNAPIN, which is an adaptor protein in the SNARE core complex, was highly expressed in rheumatoid arthritis synovial tissue macrophages, but its role in macrophages and autoimmunity is unknown. To identify SNAPIN's role in these cells, we employed siRNA to silence the expression of SNAPIN in primary human macrophages. Silencing SNAPIN resulted in swollen lysosomes with impaired CTSD (cathepsin D) activation, although total CTSD was not reduced. Neither endosome cargo delivery nor lysosomal fusion with endosomes or autophagosomes was inhibited following the forced silencing of SNAPIN. The acidification of lysosomes and accumulation of autolysosomes in SNAPIN-silenced cells was inhibited, resulting in incomplete lysosomal hydrolysis and impaired macroautophagy/autophagy flux. Mechanistic studies employing ratiometric color fluorescence on living cells demonstrated that the reduction of SNAPIN resulted in a modest reduction of H+ pump activity; however, the more critical mechanism was a lysosomal proton leak. Overall, our results demonstrate that SNAPIN is critical in the maintenance of healthy lysosomes and autophagy through its role in lysosome acidification and autophagosome maturation in macrophages largely through preventing proton leak. These observations suggest an important role for SNAPIN and autophagy in the homeostasis of macrophages, particularly long-lived tissue resident macrophages.


Assuntos
Ácidos/metabolismo , Autofagossomos/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagossomos/ultraestrutura , Autofagia , Catepsina D/metabolismo , Endossomos/metabolismo , Endossomos/ultraestrutura , Ativação Enzimática , Inativação Gênica , Células HEK293 , Humanos , Lisossomos/ultraestrutura , Macrófagos/ultraestrutura , Fusão de Membrana , Prótons , RNA Interferente Pequeno/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
6.
Nat Rev Rheumatol ; 12(9): 543-58, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27549026

RESUMO

Rheumatoid arthritis affects nearly 1% of the world's population and is a debilitating autoimmune condition that can result in joint destruction. During the past decade, inflammatory functions have been described for signalling molecules classically involved in apoptotic and non-apoptotic death pathways, including, but not limited to, Toll-like receptor signalling, inflammasome activation, cytokine production, macrophage polarization and antigen citrullination. In light of these remarkable advances in the understanding of inflammatory mechanisms of the death machinery, this Review provides a snapshot of the available evidence implicating death pathways, especially within the phagocyte populations of the innate immune system, in the perpetuation of rheumatoid arthritis and other rheumatic diseases. Elevated levels of signalling mediators of both extrinsic and intrinsic apoptosis, as well as the autophagy, are observed in the joints of patients with rheumatoid arthritis. Furthermore, risk polymorphisms are present in signalling molecules of the extrinsic apoptotic and autophagy death pathways. Although research into the mechanisms underlying these pathways has made considerable progress, this Review highlights areas where further investigation is particularly needed. This exploration is critical, as new discoveries in this field could lead to the development of novel therapies for rheumatoid arthritis and other rheumatic diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Fagócitos/fisiologia , Doenças Reumáticas/imunologia , Doenças Reumáticas/metabolismo , Transdução de Sinais , Animais , Proteínas Reguladoras de Apoptose/genética , Autofagia/fisiologia , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Células Dendríticas/fisiologia , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Humanos , Macrófagos/fisiologia , Fagocitose/fisiologia , Doenças Reumáticas/genética , Receptor fas/genética , Receptor fas/metabolismo
7.
Am J Physiol Cell Physiol ; 311(4): C673-C685, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488671

RESUMO

Calponin is an actin cytoskeleton-associated protein that regulates motility-based cellular functions. Three isoforms of calponin are present in vertebrates, among which calponin 2 encoded by the Cnn2 gene is expressed in multiple types of cells, including blood cells from the myeloid lineage. Our previous studies demonstrated that macrophages from Cnn2 knockout (KO) mice exhibit increased migration and phagocytosis. Intrigued by an observation that monocytes and macrophages from patients with rheumatoid arthritis had increased calponin 2, we investigated anti-glucose-6-phosphate isomerase serum-induced arthritis in Cnn2-KO mice for the effect of calponin 2 deletion on the pathogenesis and pathology of inflammatory arthritis. The results showed that the development of arthritis was attenuated in systemic Cnn2-KO mice with significantly reduced inflammation and bone erosion than that in age- and stain background-matched C57BL/6 wild-type mice. In vitro differentiation of calponin 2-null mouse bone marrow cells produced fewer osteoclasts with decreased bone resorption. The attenuation of inflammatory arthritis was confirmed in conditional myeloid cell-specific Cnn2-KO mice. The increased phagocytotic activity of calponin 2-null macrophages may facilitate the clearance of autoimmune complexes and the resolution of inflammation, whereas the decreased substrate adhesion may reduce osteoclastogenesis and bone resorption. The data suggest that calponin 2 regulation of cytoskeleton function plays a novel role in the pathogenesis of inflammatory arthritis, implicating a potentially therapeutic target.


Assuntos
Artrite/genética , Artrite/patologia , Proteínas de Ligação ao Cálcio/genética , Inflamação/genética , Inflamação/patologia , Macrófagos/metabolismo , Proteínas dos Microfilamentos/genética , Animais , Artrite/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Deleção de Genes , Glucose-6-Fosfato Isomerase/genética , Glucose-6-Fosfato Isomerase/metabolismo , Humanos , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Monócitos/metabolismo , Monócitos/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia , Osteoclastos/metabolismo , Osteoclastos/patologia , Fagocitose/genética , Fagocitose/fisiologia , Calponinas
8.
Arthritis Res Ther ; 16(4): R147, 2014 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25011540

RESUMO

INTRODUCTION: Our objectives were to examine mononuclear cell gene expression profiles in patients with systemic lupus erythematosus (SLE) and healthy controls and to compare subsets with and without atherosclerosis to determine which genes' expression is related to atherosclerosis in SLE. METHODS: Monocytes were obtained from 20 patients with SLE and 16 healthy controls and were in vitro-differentiated into macrophages. Subjects also underwent laboratory and imaging studies to evaluate for subclinical atherosclerosis. Whole-genome RNA expression microarray was performed, and gene expression was examined. RESULTS: Gene expression profiling was used to identify gene signatures that differentiated patients from controls and individuals with and without atherosclerosis. In monocytes, 9 out of 20 patients with SLE had an interferon-inducible signature compared with 2 out of 16 controls. By looking at gene expression during monocyte-to-macrophage differentiation, we identified pathways which were differentially regulated between SLE and controls and identified signatures based on relevant intracellular signaling molecules which could differentiate SLE patients with atherosclerosis from controls. Among patients with SLE, we used a previously defined 344-gene atherosclerosis signature in monocyte-to-macrophage differentiation to identify patient subgroups with and without atherosclerosis. Interestingly, this signature further classified patients on the basis of the presence of SLE disease activity and cardiovascular risk factors. CONCLUSIONS: Many genes were differentially regulated during monocyte-to-macrophage differentiation in SLE patients compared with controls. The expression of these genes in mononuclear cells is important in the pathogenesis of SLE, and molecular profiling using gene expression can help stratify SLE patients who may be at risk for development of atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/imunologia , Lúpus Eritematoso Sistêmico/genética , Macrófagos/imunologia , Adulto , Aterosclerose/complicações , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Feminino , Humanos , Inflamação/genética , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/imunologia , Ativação de Macrófagos/genética , Ativação de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/metabolismo , Masculino , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/imunologia , Monócitos/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma
9.
Arthritis Rheumatol ; 66(1): 68-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24431281

RESUMO

OBJECTIVE: A nonapoptotic role of Fas signaling has been implicated in the regulation of inflammation and innate immunity. This study was undertaken to elucidate the contribution of Fas signaling in macrophages to the development of arthritis. METHODS: K/BxN serum-transfer arthritis was induced in a mouse line in which Fas was conditionally deleted in the myeloid lineage (Cre(LysM) Fas(flox/flox) mice). The arthritis was assessed clinically and histologically. Expression of interleukin-1ß (IL-1ß), CXCL5, IL-10, IL-6, and gp96 was determined by enzyme-linked immunosorbent assay. Bone marrow-derived macrophages were activated with IL-1ß and gp96. Cell phenotype and apoptosis were analyzed by flow cytometry. RESULTS: Arthritis onset in Cre(LysM) Fas(flox/flox) mice was comparable with that observed in control mice; however, resolution was accelerated during the chronic phase. The attenuated arthritis was associated with reduced articular expression of the endogenous Toll-like receptor 2 (TLR-2) ligand gp96 and the neutrophil chemotactic chemokine CXCL5, and enhanced expression of IL-10. Activation with IL-1ß or gp96 induced increased IL-10 expression in Fas-deficient murine macrophages compared with control macrophages. IL-10 suppressed IL-6 and CXCL5 expression induced by IL-1ß plus gp96. IL-1ß-mediated activation of ERK, which regulates IL-10 expression, was increased in Fas-deficient mouse macrophages. CONCLUSION: Taken together, our findings indicate that impaired Fas signaling results in enhanced expression of antiinflammatory IL-10 and reduced expression of gp96, and these effects are associated with accelerated resolution of inflammation during the chronic phase of arthritis. These observations suggest that strategies to reduce endogenous TLR ligands and increase IL-10 may be beneficial in the treatment of rheumatoid arthritis.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Macrófagos/imunologia , Transdução de Sinais/imunologia , Receptor fas/imunologia , Animais , Movimento Celular , Quimiocina CXCL5/imunologia , Doença Crônica , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Transgênicos , Membrana Sinovial/imunologia , Receptor 2 Toll-Like/imunologia
10.
Inflamm Res ; 62(10): 919-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23959159

RESUMO

OBJECTIVE AND DESIGN: Antiphospholipid antibodies (APA) have been associated with clinical cardiovascular disease, but it remains unclear whether APA are associated with sub-clinical atherosclerosis. This study examined the relationship between APA and sub-clinical atherosclerosis, measured as coronary artery calcification (CAC), in participants from the prospective Coronary Artery Risk Development in Young Adults (CARDIA) Study. SUBJECTS AND METHOD: 2,203 black and white participants with sera available from the CARDIA year 7 examination and CAC measured by computed tomography at years 15 or 20 were selected. RESULTS: Anti-ß2-glycoprotein I (anti-ß2-GPI) immunoglobulin (Ig) M, IgG, and IgA were positive in 7.0, 1.4, and 1.8 % of participants, respectively; anti-cardiolipin (aCL) IgM and IgG were positive in 1.5 and 1.0 %, respectively. 9.5 % of participants had CAC score >0 at year 15. Anti-ß2-GPI IgM, IgG, IgA, and aCL IgG positivity were associated with CAC >0 at year 15 after adjustment for traditional cardiovascular risk factors; [odds ratios (95 % confidence intervals) were 1.7 (1.0, 3.1), 6.4 (2.4, 16.8), 5.6 (2.3, 13.2), and 5.1 (1.4, 18.6), respectively]. Anti-ß2-GPI IgG was associated with year 20 CAC >0, and anti-ß2-GPI IgA and aCL IgG were marginally associated. CONCLUSIONS: These findings indicate that APA positivity during young adulthood is a risk factor for subsequent sub-clinical atherosclerosis and might play a role in the pathogenesis of atherosclerosis


Assuntos
Anticorpos Antifosfolipídeos/sangue , Aterosclerose/sangue , Calcinose/sangue , Doença da Artéria Coronariana/sangue , Adulto , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Fatores de Risco
11.
J Leukoc Biol ; 93(5): 751-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23446149

RESUMO

RA is a chronic inflammatory disease characterized by the persistent expression of inflammatory cytokines from macrophages, which may be mediated, in part, through TLR2 signaling. Earlier studies demonstrate a role for TLR2 signaling in dampening the arthritis in IL-1Ra-/- mice, which was mediated through T cells. This study was performed to determine whether TLR2 signaling plays a role in the pathogenesis of T cell-independent arthritis triggered by transferring serum from K/BxN mice. We documented more severe arthritis in Tlr2-/- mice compared with WT controls. The Tlr2-/- mice also demonstrated increased inflammation, erosion, pannus formation, and osteoclastogenesis, as well as increased IL-1ß and decreased IL-10 within the joints. In vitro bone marrow-differentiated macrophages expressed comparable levels of activating and inhibitory FcγRs, however when stimulated with immune complexes, the Tlr2-/- macrophages expressed decreased IL-10 and reduced activation of Akt and ERK. Our findings indicate that Tlr2-/- promotes the effector phase of arthritis through decreased IL-10 by macrophages, which is important, not only as an anti-inflammatory cytokine but also in restraining the differentiation and activation of osteoclasts.


Assuntos
Artrite Experimental/etiologia , Interleucina-10/fisiologia , Receptor 2 Toll-Like/fisiologia , Animais , Artrite Experimental/imunologia , Interleucina-1beta/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/fisiologia , Receptores Fc/análise
12.
Ann Rheum Dis ; 72(3): 418-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22730373

RESUMO

OBJECTIVE: The aim of the study was to characterise the expression, regulation and pathogenic role of toll-like receptor 7 (TLR7) and TLR8 in rheumatoid arthritis (RA). METHODS: Expression of TLR7 and TLR8 was demonstrated in RA, osteoarthritis (OA) and normal (NL) synovial tissues (STs) employing immunohistochemistry. The authors next examined the mechanism by which TLR7 and TLR8 ligation mediates proinflammatory response by Western blot analysis and ELISA. Expression of TLR7 and TLR8 in RA monocytes was correlated to disease activity score (DAS28) and tumour necrosis factor α (TNFα) levels. Further, the effect of TLR7 ligation in RA monocytes was determined on synovial fluid (SF)-mediated TNFα transcription. RESULTS: TLR7/8 are predominately expressed in RA ST lining and sublining macrophages. The authors show that NF-κB and/or PI3K pathways are essential for TLR7/8 induction of proinflammatory factors in RA peripheral blood (PB)-differentiated macrophages. Expression of TLR7 in RA monocytes shows a strong correlation with DAS28 and TNFα levels. By contrast, expression of TLR8 in these cells does not correlate with DAS28, TLR7 or TNFα levels. The authors further demonstrate that RNA from RA SF, but not RA or NL plasma, could modulate TNFα transcription from RA monocytes that can be downregulated by antagonising TLR7 ligation or degradation of single stand (ss) RNA. Thus, ssRNA present in RA SF may function as a potential endogenous ligand for TLR7. CONCLUSIONS: These results suggest that expression of TLR7, but not TLR8, may be a predictor for RA disease activity and anti-TNFα responsiveness, and targeting TLR7 may suppress chronic progression of RA.


Assuntos
Artrite Reumatoide/metabolismo , Monócitos/metabolismo , RNA/metabolismo , Líquido Sinovial/metabolismo , Receptor 7 Toll-Like/biossíntese , Receptor 8 Toll-Like/biossíntese , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica , Fator de Necrose Tumoral alfa/biossíntese
13.
Nat Rev Rheumatol ; 9(4): 252-6, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23090510

RESUMO

The IL-12 family members, IL-12, IL-23, IL-27 and IL-35, are heterodimeric cytokines that share subunits and have important roles in autoimmunity. As well as their structural relationship the IL-12 family cytokines share some biological characteristics but have functional differences. These cytokines contribute to immune-mediated inflammation and our improved knowledge of their actions has led to alteration of the T(H)1-T(H)2 paradigm. In rheumatoid arthritis (RA), leukocyte migration, bone erosions and angiogenesis are modulated by an IL-23-IL-17 cascade, which can be negated in part by IL-12, IL-27 and IL-35 function. However, the IL-12 family members are a relatively new area of research and data have been generated mostly at the preclinical stage. Further studies in patients with RA are, therefore, required to determine whether these cytokines are valid targets for RA therapy.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Citocinas/imunologia , Interleucina-12/imunologia , Animais , Artrite Reumatoide/fisiopatologia , Doenças Autoimunes/fisiopatologia , Biomarcadores/metabolismo , Estudos de Coortes , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Interleucina-12/metabolismo , Interleucina-17/imunologia , Interleucina-17/metabolismo , Interleucina-23/imunologia , Interleucina-23/metabolismo , Camundongos , Medição de Risco , Sensibilidade e Especificidade , Índice de Gravidade de Doença
14.
Am J Pathol ; 182(1): 192-205, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23141927

RESUMO

Because recent studies implicate Toll-like receptors (TLRs) in the pathogenesis of fibrosis, we sought to investigate the in vitro and in vivo role and mechanism of TLR4-mediated fibroblast responses in fibrogenesis. We found that TLR4 was constitutively expressed, and accumulation of endogenous TLR4 ligands significantly elevated, in lesional skin and lung tissues from patients with scleroderma. Activation of TLR4 signaling in explanted fibroblasts resulted in enhanced collagen synthesis and increased expression of multiple genes involved in tissue remodeling and extracellular matrix homeostasis. Moreover, TLR4 dramatically enhanced the sensitivity of fibroblasts to the stimulatory effect of transforming growth factor-ß1. These profibrotic responses were abrogated by both genetic and pharmacological disruption of TLR4 signaling in vitro, and skin fibrosis induced by bleomycin in vivo was attenuated in mice harboring a mutated TLR4. Activation of TLR4 in fibroblasts augmented the intensity of canonical Smad signaling, and was accompanied by suppression of anti-fibrotic microRNA expression. Together, these results suggest a novel model to account for persistent fibrogenesis in scleroderma, in which activation of fibroblast TLR4 signaling, triggered by damage-associated endogenous TLR4 ligands, results in augmented transforming growth factor-ß1 sensitivity with increased matrix production and progressive connective tissue remodeling. Under these conditions, fibroblast TLR4 serves as the switch for converting self-limited tissue repair into intractable fibrosis.


Assuntos
Escleroderma Sistêmico/metabolismo , Receptor 4 Toll-Like/fisiologia , Fator de Crescimento Transformador beta/farmacologia , Adulto , Idoso , Animais , Biópsia , Bleomicina , Células Cultivadas , Colágeno/biossíntese , Matriz Extracelular/fisiologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Ligantes , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , MicroRNAs/biossíntese , MicroRNAs/genética , Pessoa de Meia-Idade , Escleroderma Sistêmico/induzido quimicamente , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia , Pele/metabolismo , Pele/patologia , Receptor 4 Toll-Like/antagonistas & inibidores
15.
Am J Med ; 125(8): S1, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22840678

RESUMO

Gout is a chronic, potentially debilitating condition characterized by an inflammatory process in the joints or periarticular tissues that results from the deposition of monosodium urate crystals. Underdiagnosis and undertreatment can lead to the development of tophi and chronic arthropathy. A presumptive diagnosis of gout can be made on the basis of the clinical presentation as well as risk factors such as metabolic syndrome. Key conditions to rule out in the differential diagnosis are septic arthritis, calcium pyrophosphate deposition disease (pseudogout), fracture, and rheumatoid arthritis. Acute flares of gout should be managed with nonsteroidal antiinflammatory drugs (NSAIDs), colchicine, or corticosteroids. With a diagnosis of gout, if urate-lowering therapy (ULT) is required, prophylaxis should be considered with low-dose colchicine or an NSAID, followed by the addition of ULT. The goal of ULT is to reach a serum uric acid (SUA) level ≤6.0 mg/dL. Measurements of SUA should be obtained after resolution of an acute attack, then periodically to facilitate titration of the ULT dose to achieve the target SUA level. Studies have confirmed significant reductions in gout attacks among patients who have attained SUA levels ≤6.0 mg/dL with ULT. Patient education concerning the disease and its treatment is essential to ensure close adherence with recommended therapies. Patients should also understand that ULT is intended as long-term, and for most patients, lifelong therapy to maximize the prospects for control of the disease. Clinicians should feel confident in making a presumptive diagnosis and choosing a therapeutic regimen for gout while effectively communicating with and educating patients about their disease.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Supressores da Gota/uso terapêutico , Gota/tratamento farmacológico , Encaminhamento e Consulta , Corticosteroides/uso terapêutico , Alopurinol/uso terapêutico , Colchicina/uso terapêutico , Febuxostat , Gota/sangue , Gota/diagnóstico , Humanos , Assistência de Longa Duração , Adesão à Medicação , Tiazóis/uso terapêutico , Ácido Úrico/sangue
16.
Arthritis Rheum ; 64(11): 3638-48, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22777994

RESUMO

OBJECTIVE: The mechanisms that contribute to the persistent activation of macrophages in rheumatoid arthritis (RA) are incompletely understood. The aim of this study was to determine the contribution of endogenous gp96 in Toll-like receptor (TLR)-mediated macrophage activation in RA. METHODS: RA synovial fluid was used to activate macrophages and HEK-TLR-2 and HEK-TLR-4 cells. Neutralizing antibodies to TLR-2, TLR-4, and gp96 were used to inhibit activation. RA synovial fluid macrophages were isolated by CD14 negative selection. Cell activation was measured by the expression of tumor necrosis factor α (TNFα) or interleukin-8 messenger RNA. Arthritis was induced in mice by K/BxN serum transfer. The expression of gp96 was determined by immunoblot analysis, enzyme-linked immunosorbent assay, and immunohistochemistry. Arthritis was treated with neutralizing anti-gp96 antiserum or control serum. RESULTS: RA synovial fluid induced the activation of macrophages and HEK-TLR-2 and HEK-TLR-4 cells. RA synovial fluid-induced macrophage and HEK-TLR-2 activation was suppressed by neutralizing anti-gp96 antibodies only in the presence of high (>800 ng/ml) rather than low (<400 ng/ml) concentrations of gp96. Neutralization of RA synovial fluid macrophage cell surface gp96 inhibited the constitutive expression of TNFα. Supporting the role of gp96 in RA, joint tissue gp96 expression was induced in mice with the K/BxN serum-induced arthritis, and neutralizing antibodies to gp96 ameliorated joint inflammation, as determined by clinical and histologic examination. CONCLUSION: These observations support the notion that gp96 plays a role as an endogenous TLR-2 ligand in RA and identify the TLR-2 pathway as a therapeutic target.


Assuntos
Artrite Reumatoide/imunologia , Glicoproteínas de Membrana/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/imunologia , Receptor 2 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/imunologia , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos , Pessoa de Meia-Idade , Membrana Sinovial/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/imunologia , Receptor 4 Toll-Like/metabolismo
17.
J Immunol ; 189(1): 475-83, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22661088

RESUMO

The innate immune system plays an important role in rheumatoid arthritis (RA) pathogenesis. Previous studies support the role of TLR2 and 4 in RA and experimental arthritis models; however, the regulation and pathogenic effect of TLR5 is undefined in RA. In this study, we show that TLR5 is elevated in RA and osteoarthritis ST lining and sublining macrophages and endothelial cells compared with normal individuals. Furthermore, expression of TLR5 is elevated in RA synovial fluid macrophages and RA peripheral blood monocytes compared with RA and normal peripheral blood in vitro-differentiated macrophages. We also found that TLR5 on RA monocytes is an important modulator of TNF-α in RA synovial fluid and that TLR5 expression on these cells strongly correlates with RA disease activity and TNF-α levels. Interestingly, TNF-α has a feedback regulation with TLR5 expression in RA monocytes, whereas expression of this receptor is regulated by IL-17 and IL-8 in RA macrophages and fibroblasts. We show that RA monocytes and macrophages are more responsive to TLR5 ligation compared with fibroblasts despite the proinflammatory response being mediated through the same signaling pathways in macrophages and fibroblasts. In conclusion, we document the potential role of TLR5 ligation in modulating transcription of TNF-α from RA synovial fluid and the strong correlation of TLR5 and TNF-α with each other and with disease activity score in RA monocytes. Our results suggest that expression of TLR5 may be a predictor for RA disease progression and that targeting TLR5 may suppress RA.


Assuntos
Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Mediadores da Inflamação/fisiologia , Membrana Sinovial/imunologia , Receptor 5 Toll-Like/fisiologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/imunologia , Artrite Reumatoide/genética , Células Cultivadas , Humanos , Mediadores da Inflamação/sangue , Mediadores da Inflamação/isolamento & purificação , Ligantes , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/patologia , Osteoartrite/genética , Osteoartrite/imunologia , Osteoartrite/patologia , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Receptor 5 Toll-Like/biossíntese , Receptor 5 Toll-Like/sangue , Fator de Necrose Tumoral alfa/fisiologia , Regulação para Cima/genética
18.
Ann Rheum Dis ; 71(8): 1411-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22523426

RESUMO

OBJECTIVE: The mechanisms contributing to the persistent activation of macrophages in rheumatoid arthritis (RA) are not fully understood. Some studies suggest that endogenous toll-like receptor (TLR) ligands promote the chronic inflammation observed in RA. The objective of this study was to identify endogenous TLR ligands expressed in RA synovial tissue (ST) based on their ability to bind the extracellular domains of TLR2 or TLR4. METHODS: A yeast two-hybrid cDNA library was constructed from ST obtained by arthroscopy from patients with RA and screened using the extracellular domains of TLR2 and TLR4 as the bait. Interactions between TLRs and Snapin were demonstrated by reciprocal co-immunoprecipitation. ST was examined by histology, and single- and two-colour immunohistochemistry and quantitative reverse transcriptase PCR. Snapin (SNAP - associated protein) expression in macrophages was examined by Western Blot analysis and confocal microscopy. The ability of Snapin to activate through TLR2 was examined. RESULTS: Employing a yeast two-hybrid system, Snapin was the most frequently identified molecule that interacted with TLR2. These results were confirmed by pull-down of in vitro-expressed Snapin together with TLR2. By immunohistochemistry and quantitative reverse transcriptase PCR, Snapin was highly expressed in RA ST, and it was readily detected in macrophages, where it co-localised in the late endosomes. ST Snapin expression correlated with inflammation and was not disease specific. Finally, Snapin was capable of activating through TLR2. CONCLUSION: These observations identify Snapin as a novel endogenous TLR2 ligand in RA, and thus support a role for persistent TLR2 signalling in the pathogenesis of RA.


Assuntos
Artrite Reumatoide/metabolismo , Membrana Sinovial/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Artrite Reumatoide/patologia , Artrite Reumatoide/cirurgia , Western Blotting , Endossomos/metabolismo , Endossomos/patologia , Expressão Gênica , Biblioteca Gênica , Humanos , Ligantes , Ativação de Macrófagos , Macrófagos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/fisiologia , Membrana Sinovial/patologia , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Transporte Vesicular/genética
19.
J Hand Surg Am ; 37(4): 783-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22305433

RESUMO

Giant cell tumors of bone in the hand are rare. We present a case of a recurrent giant cell tumor in the metacarpal 42 years after intralesional excision and autogenous bone grafting. The possibility of recurrent disease should be considered in the evaluation of any patient presenting with new onset of pain at the site of a previously addressed giant cell tumor. Management of these recurrent lesions should include wide excision with digit salvaging procedures or ray amputation owing to the high rates of treatment failures seen with marginal excision.


Assuntos
Transplante Ósseo , Tumor de Células Gigantes do Osso/patologia , Ossos Metacarpais , Recidiva Local de Neoplasia/cirurgia , Idoso , Curetagem , Tumor de Células Gigantes do Osso/diagnóstico por imagem , Tumor de Células Gigantes do Osso/cirurgia , Mãos , Humanos , Imageamento por Ressonância Magnética , Masculino , Ossos Metacarpais/diagnóstico por imagem , Invasividade Neoplásica , Radiografia , Fatores de Tempo
20.
Arthritis Rheum ; 64(3): 808-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22143975

RESUMO

OBJECTIVE: The death receptor Fas is a critical mediator of the extrinsic apoptotic pathway, and its role in mediating lymphoproliferation has been extensively examined. The present study was undertaken to investigate the impact of myeloid cell-specific loss of Fas. METHODS: Mice with Fas flanked by loxP sites (Fas(flox/flox) ) were crossed with mice expressing Cre under control of the murine lysozyme M gene promoter (Cre(LysM) ), which functions in mature lysozyme-expressing cells of the myelomonocytic lineage. The genotype for Cre(LysM) Fas(flox/flox) mice was verified by polymerase chain reaction and flow cytometric analysis. Flow cytometric analysis was also used to characterize myeloid, dendritic, and lymphoid cell distribution and activation in bone marrow, blood, and spleen. Luminex-based assays and enzyme-linked immunosorbent assays were used to measure serum cytokine/chemokine and immunoglobulin levels. Renal damage or dysfunction was examined by immunohistochemical and immunofluorescence analysis. RESULTS: Cre(LysM) Fas(flox/flox) mice exhibited a systemic lupus erythematosus (SLE)-like disease that included leukocytosis, splenomegaly, hypergammaglobulinemia, antinuclear autoantibody and proinflammatory cytokine production, and glomerulonephritis. Loss of Fas in myeloid cells increased levels of both Gr-1(low) and Gr-1(intermediate) blood monocytes and splenic macrophages and, in a paracrine manner, incited activation of conventional dendritic cells and lymphocytes in Cre(LysM) Fas(flox/flox) mice. CONCLUSION: Taken together, these results suggest that loss of Fas in myeloid cells is sufficient to induce inflammatory phenotypes in mice, reminiscent of an SLE-like disease. Thus, Fas in myeloid cells may be considered a suppressor of systemic autoimmunity.


Assuntos
Doenças Autoimunes/prevenção & controle , Autoimunidade , Células da Medula Óssea/metabolismo , Receptor fas/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/patologia , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Citometria de Fluxo , Imunidade Inata , Rim/metabolismo , Rim/patologia , Ativação Linfocitária , Linfócitos/imunologia , Linfócitos/metabolismo , Linfócitos/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/metabolismo , Baço/patologia , Receptor fas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA