RESUMO
BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).
Assuntos
Infecções por Escherichia coli , Síndrome Hemolítico-Urêmica , Nefropatias , Podócitos , Escherichia coli Shiga Toxigênica , Criança , Humanos , Camundongos , Animais , Podócitos/metabolismo , Podócitos/patologia , Toxina Shiga/genética , Toxina Shiga/metabolismo , Toxina Shiga/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/metabolismo , Síndrome Hemolítico-Urêmica/patologia , Escherichia coli Shiga Toxigênica/metabolismo , Ativação do Complemento , Nefropatias/patologiaRESUMO
AIMS/HYPOTHESIS: Podocyte loss or injury is one of the earliest features observed in the pathogenesis of diabetic kidney disease (DKD), which is the leading cause of end-stage renal failure worldwide. Dysfunction in the IGF axis, including in IGF binding proteins (IGFBPs), is associated with DKD, particularly in the early stages of disease progression. The aim of this study was to investigate the potential roles of IGFBPs in the development of type 2 DKD, focusing on podocytes. METHODS: IGFBP expression was analysed in the Pima DKD cohort, alongside data from the Nephroseq database, and in ex vivo human glomeruli. Conditionally immortalised human podocytes and glomerular endothelial cells were studied in vitro, where IGFBP-1 expression was analysed using quantitative PCR and ELISAs. Cell responses to IGFBPs were investigated using migration, cell survival and adhesion assays; electrical cell-substrate impedance sensing; western blotting; and high-content automated imaging. RESULTS: Data from the Pima DKD cohort and from the Nephroseq database demonstrated a significant reduction in glomerular IGFBP-1 in the early stages of human type 2 DKD. In the glomerulus, IGFBP-1 was predominantly expressed in podocytes and controlled by phosphoinositide 3-kinase (PI3K)-forkhead box O1 (FoxO1) activity. In vitro, IGFBP-1 signalled to podocytes via ß1-integrins, resulting in increased phosphorylation of focal-adhesion kinase (FAK), increasing podocyte motility, adhesion, electrical resistance across the adhesive cell layer and cell viability. CONCLUSIONS/INTERPRETATION: This work identifies a novel role for IGFBP-1 in the regulation of podocyte function and that the glomerular expression of IGFBP-1 is reduced in the early stages of type 2 DKD, via reduced FoxO1 activity. Thus, we hypothesise that strategies to maintain glomerular IGFBP-1 levels may be beneficial in maintaining podocyte function early in DKD.
Assuntos
Diabetes Mellitus Tipo 2/patologia , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Biópsia , Células Cultivadas , Estudos de Coortes , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Integrina beta1/metabolismo , Rim/metabolismo , Rim/patologia , Glomérulos Renais/patologia , Podócitos/patologia , Transdução de Sinais/genéticaRESUMO
We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies.
Assuntos
Fatores de Despolimerização de Actina/fisiologia , Galanina/farmacologia , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Animais , Western Blotting , Ativação Enzimática/efeitos dos fármacos , Feminino , Gânglios Espinais/citologia , Cones de Crescimento/efeitos dos fármacos , Camundongos , Camundongos Knockout , Microscopia de Vídeo , Células PC12 , Pseudópodes/efeitos dos fármacos , Ratos , Estimulação Química , Proteínas rac de Ligação ao GTP/metabolismoRESUMO
Expression of the neuropeptide galanin is up-regulated in many brain regions following nerve injury and in the basal forebrain of patients with Alzheimer's disease. We have previously demonstrated that galanin modulates hippocampal neuronal survival, although it was unclear which receptor subtype(s) mediates this effect. Here we report that the protective role played by galanin in hippocampal cultures is abolished in animals carrying a loss-of-function mutation in the second galanin receptor subtype (GalR2-MUT). Exogenous galanin stimulates the phosphorylation of the serine/threonine kinase Akt and extracellular signal-regulated kinase (ERK) in wild-type (WT) cultures by 435 +/- 5% and 278 +/- 2%, respectively. The glutamate-induced activation of Akt was abolished in cultures from galanin knockout animals, and was markedly attenuated in GalR2-MUT animals, compared with WT controls. In contrast, similar levels of glutamate-induced ERK activation were observed in both loss-of-function mutants, but were further increased in galanin over-expressing animals. Using specific inhibitors of either ERK or Akt confirms that a GalR2-dependent modulation in the activation of the Akt and ERK signalling pathways contributes to the protective effects of galanin. These findings imply that the rise in endogenous galanin observed either after brain injury or in various disease states is an adaptive response that reduces apoptosis by the activation of GalR2, and hence Akt and ERK.
Assuntos
Citoproteção/genética , Galanina/metabolismo , Hipocampo/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Animais , Dano Encefálico Crônico/genética , Dano Encefálico Crônico/metabolismo , Dano Encefálico Crônico/fisiopatologia , Citoproteção/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Galanina/farmacologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Degeneração Neural/genética , Degeneração Neural/fisiopatologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Galanina/agonistas , Receptor Tipo 2 de Galanina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologiaRESUMO
Expression of the neuropeptide galanin is markedly up-regulated within the adult dorsal root ganglia (DRG) following peripheral nerve injury. We have previously demonstrated that galanin knockout (Gal-KO) mice have a developmental loss of a subset of DRG neurons. Galanin also plays a trophic role in the adult animal, and the rate of peripheral nerve regeneration and neurite outgrowth is reduced in adult Gal-KO mice. Here we describe the characterization of mice with an absence of GalR2 gene transcription (GalR2-MUT) and demonstrate that they have a 15% decrease in the number of calcitonin gene-related peptide (CGRP) expressing neuronal profiles in the adult DRG, associated with marked deficits in neuropathic and inflammatory pain behaviours. Adult GalR2-MUT animals also have a one third reduction in neurite outgrowth from cultured DRG neurons that cannot be rescued by either galanin or a high-affinity GalR2/3 agonist. Galanin activates extracellular signal-regulated kinase (ERK) and Akt in adult wild-type (WT) mouse DRG. Intact adult DRG from GalR2-MUT animals have lower levels of pERK and higher levels of pAkt than are found in WT controls. These data suggest that a lack of GalR2 activation in Gal-KO and GalR2-MUT animals is responsible for the observed developmental deficits in the DRG, and the decrease in neurite outgrowth in the adult.