Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cells Transl Med ; 2(3): 167-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23413376

RESUMO

Human induced pluripotent stem cells (iPSCs) offer hope for personalized regenerative cell therapy in amyotrophic lateral sclerosis (ALS). We analyzed the fate of human iPSC-derived neural progenitors transplanted into the spinal cord of wild-type and transgenic rats carrying a human mutated SOD1(G93A) gene. The aim was to follow survival and differentiation of human neural progenitors until day 60 post-transplantation in two different in vivo environments, one being ALS-like. iPSC-derived neural progenitors efficiently engrafted in the adult spinal cord and survived at high numbers. Different neural progenitor, astroglial, and neuronal markers indicated that, over time, the transplanted nestin-positive cells differentiated into cells displaying a neuronal phenotype in both wild-type and transgenic SOD1 rats. Although a transient microglial phenotype was detected at day 15, astroglial staining was negative in engrafted cells from day 1 to day 60. At day 30, differentiation toward a neuronal phenotype was identified, which was further established at day 60 by the expression of the neuronal marker MAP2. A specification process into motoneuron-like structures was evidenced in the ventral horns in both wild-type and SOD1 rats. Our results demonstrate proof-of-principle of survival and differentiation of human iPSC-derived neural progenitors in in vivo ALS environment, offering perspectives for the use of iPSC-based therapy in ALS.


Assuntos
Esclerose Lateral Amiotrófica/cirurgia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/transplante , Neurogênese , Neurônios/transplante , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Biomarcadores/metabolismo , Sobrevivência Celular , Células Cultivadas , Modelos Animais de Doenças , Estudos de Viabilidade , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Superóxido Dismutase/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA