Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Biomolecules ; 14(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38672414

RESUMO

Small-cell lung cancer (SCLC) cases represent approximately 15% of all lung cancer cases, remaining a recalcitrant malignancy with poor survival and few treatment options. In the last few years, the addition of immunotherapy to chemotherapy improved clinical outcomes compared to chemotherapy alone, resulting in the current standard of care for SCLC. However, the advantage of immunotherapy only applies to a few SCLC patients, and predictive biomarkers selection are lacking for SCLC. In particular, due to some features of SCLC, such as high heterogeneity, elevated cell plasticity, and low-quality tissue samples, SCLC biopsies cannot be used as biomarkers. Therefore, the characterization of the tumor and, subsequently, the selection of an appropriate therapeutic combination may benefit greatly from liquid biopsy. Soluble factors, circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and extracellular vesicles (EVs) are now useful tools in the characterization of SCLC. This review summarizes the most recent data on biomarkers detectable with liquid biopsy, emphasizing their role in supporting tumor detection and their potential role in SCLC treatment choice.


Assuntos
Biomarcadores Tumorais , Imunoterapia , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Carcinoma de Pequenas Células do Pulmão , Humanos , Biópsia Líquida/métodos , Carcinoma de Pequenas Células do Pulmão/terapia , Carcinoma de Pequenas Células do Pulmão/patologia , Carcinoma de Pequenas Células do Pulmão/imunologia , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/diagnóstico , Imunoterapia/métodos , Biomarcadores Tumorais/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , DNA Tumoral Circulante/sangue , Vesículas Extracelulares/metabolismo
2.
Int J Pharm ; 650: 123697, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081557

RESUMO

Optimizing current therapies is among next steps in metastatic melanoma (MM) treatment landscape. The innovation of this study is the design of production process by microfluidics of cell membrane (CM)-modified nanoparticles (NPs), as an emerging biomimetic platform that allows for reduced immune clearance, long blood circulation time and improved specific tumor targeting. To achieve melanoma selectivity, direct membrane fusion between synthetic liposomes and CMs extracted from MM cell line was performed by microfluidic sonication approach, then the hybrid liposomes were loaded with cobimetinib (Cob) or lenvatinib (Lenva) targeting agents and challenged against MM cell lines and liver cancer cell line to evaluate homotypic targeting and antitumor efficacy. Characterization studies demonstrated the effective fusion of CM with liposome and the high encapsulation efficiency of both drugs, showing the proficiency of microfluidic-based production. By studying the targeting of melanoma cells by hybrid liposomes versus liposomes, we found that both NPs entered cells through endocytosis, whereas the former showed higher selectivity for MM cells from which CM was extracted, with 8-fold higher cellular uptake than liposomes. Hybrid liposome formulation of Cob and Lenva reduced melanoma cells viability to a greater extent than liposomes and free drug and, notably, showed negligible toxicity as demonstrated by bona fide haemolysis test. The CM-modified NPs presented here have the potential to broaden the choice of therapeutic options in MM treatment.


Assuntos
Lipossomos , Melanoma , Humanos , Melanoma/tratamento farmacológico , Microfluídica , Biomimética , Sistemas de Liberação de Medicamentos , Linhagem Celular Tumoral
3.
J Exp Clin Cancer Res ; 42(1): 251, 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759291

RESUMO

BACKGROUND: Clinical drawback in checkpoint inhibitors immunotherapy (ICI) of metastatic melanoma (MM) is monitoring clinical benefit. Soluble forms of PD1(sPD1) and PD-L1(sPD-L1) and extracellular vesicles (EVs) expressing PD1 and PD-L1 have recently emerged as predictive biomarkers of response. As factors released in the blood, EVs and soluble forms could be relevant in monitoring treatment efficacy and adaptive resistance to ICI. METHODS: We used pre-therapy plasma samples of 110 MM patients and longitudinal samples of 46 patients. Elisa assay and flow cytometry (FCM) were used to measure sPD-L1 and sPD1 concentrations and the percentage of PD1+ EVs and PD-L1+ EVs, released from tumor and immune cells in patients subsets. Transwell assays were conducted to investigate the impact of EVs of each patient subset on MM cells invasion and interaction between tumor cells and macrophages or dendritic cells. Viability assays were performed to assess EVs effect on MM cells and organoids sensitivity to anti-PD1. FCM was used to investigate immunosuppressive markers in EVs and immune cells. RESULTS: The concentrations of sPD1 and sPD-L1 in pre-treatment and longitudinal samples did not correlate with anti-PD1 response, instead only tumor-derived PD1+ EVs decreased in long responders while increased during disease progression in responders. Notably, we observed reduction of T cell derived EVs expressing LAG3+ and PD1+ in long responders and their increase in responders experiencing progression. By investigating the impact of EVs on disease progression, we found that those isolated from non-responders and from patients with progression disease accelerated tumor cells invasiveness and migration towards macrophages, while EVs of long responders reduced the metastatic potential of MM cells and neo-angiogenesis. Additionally, the EVs of non-responders and of progression disease patients subset reduced the sensitivity of MM cells and organoids of responder to anti-PD1 and the recruitment of dendritic cells, while the EVs of progression disease subset skewed macrophages to express higher level of PDL-1. CONCLUSION: Collectively, we suggest that the detection of tumor-derived PD1 + EVs may represent a useful tool for monitoring the response to anti-PD1 and a role for EVs shed by tumor and immune cells in promoting tumor progression and immune dysfunction.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Antígeno B7-H1 , Terapia de Imunossupressão , Melanoma/tratamento farmacológico , Biomarcadores , Progressão da Doença
4.
Front Cell Dev Biol ; 11: 1178316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384250

RESUMO

Background: Cervical cancer (CC) is characterized by genomic alterations in DNA repair genes, which could favor treatment with agents causing DNA double-strand breaks (DSBs), such as trabectedin. Hence, we evaluated the capability of trabectedin to inhibit CC viability and used ovarian cancer (OC) models as a reference. Since chronic stress may promote gynecological cancer and may hinder the efficacy of therapy, we investigated the potential of targeting ß-adrenergic receptors with propranolol to enhance trabectedin efficacy and change tumor immunogenicity. Methods: OC cell lines, Caov-3 and SK-OV-3, CC cell lines, HeLa and OV2008, and patient-derived organoids were used as study models. MTT and 3D cell viability assays were used for drug(s) IC50 determination. The analysis of apoptosis, JC-1 mitochondrial membrane depolarization, cell cycle, and protein expression was performed by flow cytometry. Cell target modulation analyses were carried out by gene expression, Western blotting, immunofluorescence, and immunocytochemistry. Results: Trabectedin reduced the proliferation of both CC and OC cell lines and notably of CC patient-derived organoids. Mechanistically, trabectedin caused DNA DSBs and S-phase cell cycle arrest. Despite DNA DSBs, cells failed the formation of nuclear RAD51 foci and underwent apoptosis. Under norepinephrine stimulation, propranolol enhanced trabectedin efficacy, further inducing apoptosis through the involvement of mitochondria, Erk1/2 activation, and the increase of inducible COX-2. Notably, trabectedin and propranolol affected the expression of PD1 in both CC and OC cell lines. Conclusion: Overall, our results show that CC is responsive to trabectedin and provide translational evidence that could benefit CC treatment options. Our study pointed out that combined treatment offset trabectedin resistance caused by ß-adrenergic receptor activation in both ovarian and cervical cancer models.

5.
Medicina (Kaunas) ; 59(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37241104

RESUMO

Background: Over the past few decades, there has been much debate and research into the link between alcohol consumption and the development and progression of pancreatic ductal adenocarcinoma (PDAC). Objectives: To contribute to the ongoing discussion and gain further insights into this topic, our study analysed the gene expression differences in PDAC patients based on their alcohol consumption history. Methods: To this end, we interrogated a large publicly available dataset. We next validated our findings in vitro. Results: Our findings revealed that patients with a history of alcohol consumption showed significant enrichment in the TGFß-pathway: a signaling pathway implicated in cancer development and tumor progression. Specifically, our bioinformatic dissection of gene expression differences in 171 patients with PDAC showed that those who had consumed alcohol had higher levels of TGFß-related genes. Moreover, we validated the role of the TGFß pathway as one of the molecular drivers in producing massive stroma, a hallmark feature of PDAC, in patients with a history of alcohol consumption. This suggests that inhibition of the TGFß pathway could serve as a novel therapeutic target for PDAC patients with a history of alcohol consumption and lead to increased sensitivity to chemotherapy. Our study provides valuable insights into the molecular mechanisms underlying the link between alcohol consumption and PDAC progression. Conclusions: Our findings highlight the potential significance of the TGFß pathway as a therapeutic target. The development of TGFß-inhibitors may pave the way for developing more effective treatment strategies for PDAC patients with a history of alcohol consumption.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/metabolismo , Etanol/efeitos adversos , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas
6.
Pharmacol Res ; 182: 106323, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752358

RESUMO

The V600E mutation in BRAF is associated with increased phosphorylation of Erk1/2 and high sensitivity to BRAFi/MEKi combination in metastatic melanoma. In very few patients, a tandem mutation in BRAF, V600 and K601, causes a different response to BRAFi/MEKi combination. BRAFV600E;K601Q patient-derived organoids (PDOs) were generated to investigate targeted therapy efficacy and docking analysis was used to assess BRAFV600E;K601Q interactions with Vemurafenib. PDOs were not sensitive to Vemurafenib and Cobimetinib given alone and sensitive to their combination, although not as responsive as BRAFV600E PDOs. The docking analysis justified such a result showing that the tandem mutation in BRAF reduced the affinity for Vemurafenib. Tumor analysis showed that BRAFV600E;K601Q displayed both increased phosphorylation of Erk1/2 at cytoplasmic level and activation of Notch resistance signaling. This prompted us to inhibit Notch signaling with Nirogacestat, achieving a greater antitumor response and providing PDOs-based evaluation of treatment efficacy in such rare metastatic melanoma.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Mutação , Organoides/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Vemurafenib/farmacologia
7.
Mol Cancer ; 21(1): 20, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042524

RESUMO

BACKGROUND: The immunotherapy with immune checkpoints inhibitors (ICI) has changed the life expectancy in metastatic melanoma (MM) patients. Nevertheless, several patients do not respond hence, the identification and validation of novel biomarkers of response to ICI is of crucial importance. Circulating extracellular vesicles (EVs) such as PD-L1+ EV mediate resistance to anti-PD1, instead the role of PD1+ EV is not fully understood. METHODS: We isolated the circulating EVs from the plasma of an observational cohort study of 71 metastatic melanoma patients and correlated the amount of PD-L1+ EVs and PD1+ EVs with the response to ICI. The analysis was performed according to the origin of EVs from the tumor and the immune cells. Subsequently, we analysed the data in a validation cohort of 22 MM patients to assess the reliability of identified EV-based biomarkers. Additionally we assessed the involvement of PD1+ EVs in the seizure of nivolumab and in the perturbation of immune cells-mediated killing of melanoma spheroids. RESULTS: The level of PD-L1+ EVs released from melanoma and CD8+ T cells and that of PD1+ EVs irrespective of the cellular origin were higher in non-responders. The Kaplan-Meier curves indicated that higher levels of PD1+ EVs were significantly correlated with poorer progression-free survival (PFS) and overall survival (OS). Significant correlations were found for PD-L1+ EVs only when released from melanoma and T cells. The multivariate analysis showed that high level of PD1+ EVs, from T cells and B cells, and high level of PD-L1+ EVs from melanoma cells, are independent biomarkers of response. The reliability of PD-L1+ EVs from melanoma and PD1+ EVs from T cells in predicting PFS was confirmed in the validation cohort through the univariate Cox-hazard regression analysis. Moreover we discovered that the circulating EVs captured nivolumab and reduced the T cells trafficking and tumor spheroids killing. CONCLUSION: Our study identified circulating PD1+ EVs as driver of resistance to anti-PD1, and highlighted that the analysis of single EV population by liquid biopsy is a promising tool to stratify MM patients for immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Biomarcadores Tumorais , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Diagnóstico por Imagem , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunofenotipagem , Masculino , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Melanoma/etiologia , Metástase Neoplásica , Estadiamento de Neoplasias , Receptor de Morte Celular Programada 1/genética , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes
8.
Mol Oncol ; 16(4): 904-920, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003583

RESUMO

Vitamin D is used to reduce cancer risk and improve the outcome of cancer patients, but the vitamin D receptor (VDR; also known as the calcitriol receptor) pathway needs to be functionally intact to ensure the biological effects of circulating calcitriol, the active form of vitamin D. Besides estrogen receptor alpha (ERα), estrogen-related receptor alpha (ERRα) has also been shown to interfere with the VDR pathway, but its role in the antitumor and transactivation activity of calcitriol is completely unknown in breast cancer (BC). We observed that ERRα functionally supported the proliferation of BC cell lines and acted as a calcitriol-induced regulator of VDR. As such, ERRα deregulated the calcitriol-VDR transcription by enhancing the expression of CYP24A1 as well as of both ERα and aromatase (CYP19A1) in calcitriol-treated cells. ERRα knockdown limited the effect of calcitriol by reducing calcitriol-induced G0/G1 phase cell cycle arrest and by affecting the expression of cyclin D1 and p21/Waf. The interactome analysis suggested that Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-α (PGC-1α) and Proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) are key players in the genomic actions of the calcitriol-VDR-ERRα axis. Evaluation of patient outcomes in The Cancer Genome Atlas (TCGA) dataset showed the translational significance of the biological effects of the VDR-ERRα axis, highlighting that VDR, CYP24A1, and ERRα overexpression correlates with poor prognosis in basal-like BC.


Assuntos
Neoplasias da Mama , Receptores de Calcitriol , Neoplasias da Mama/patologia , Calcitriol/metabolismo , Calcitriol/farmacologia , Proteínas Correpressoras , Estrogênios , Feminino , Humanos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição/metabolismo , Vitamina D3 24-Hidroxilase/genética , Receptor ERRalfa Relacionado ao Estrogênio
9.
Int J Pharm ; 610: 121246, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737115

RESUMO

Solid lipid nanoparticles (SLNs) can combine the advantages of different colloidal carriers and prevent some of their disadvantages. The production of nanoparticles by means of microfluidics represents a successful platform for industrial scale-up of nanoparticle manufacture in a reproducible way. The realisation of a microfluidic technique to obtain SLNs in a continuous and reproducible manner encouraged us to create surface functionalised SLNs for targeted drug release using the same procedure. A tumor homing peptide, iRGD, owning a cryptic C-end Rule (CendR) motif is responsible for neuropilin-1 (NRP-1) binding and for triggering extravasation and tumor penetration of the peptide. In this study, the Paclitaxel loaded-SLNs produced by microfluidics were functionalized with the iRGD peptide. The SLNs proved to be stable in aqueous medium andwere characterized by a Z-average under 150 nm, a polydispersity index below 0.2, a zeta-potential between -20 and -35 mV and a drug encapsulation efficiency around 40%. Moreover, in vitro cytotoxic effects and cellular uptake have been assessed using 2D and 3D tumour models of U87 glioblastoma cell lines. Overall, these results demonstrate that the surface functionalization of SLNs with iRGD allow better cellular uptake and cytotoxicity ability.


Assuntos
Nanopartículas , Paclitaxel , Linhagem Celular Tumoral , Portadores de Fármacos , Lipossomos , Microfluídica , Tamanho da Partícula
10.
Genes (Basel) ; 12(7)2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34356109

RESUMO

Melanoma and non-melanoma skin cancers (NMSCs) are the most frequent cancers of the skin in white populations. An increased risk in the development of skin cancers has been associated with the combination of several environmental factors (i.e., ultraviolet exposure) and genetic background, including melanocortin-1 receptor (MC1R) status. In the last few years, advances in the diagnosis of skin cancers provided a great impact on clinical practice. Despite these advances, NMSCs are still the most common malignancy in humans and melanoma still shows a rising incidence and a poor prognosis when diagnosed at an advanced stage. Efforts are required to underlie the genetic and clinical heterogeneity of melanoma and NMSCs, leading to an optimization of the management of affected patients. The clinical implications of the impact of germline MC1R variants in melanoma and NMSCs' risk, together with the additional risk conferred by somatic mutations in other peculiar genes, as well as the role of MC1R screening in skin cancers' prevention will be addressed in the current review.


Assuntos
Receptor Tipo 1 de Melanocortina/genética , Receptor Tipo 1 de Melanocortina/metabolismo , Neoplasias Cutâneas/genética , Predisposição Genética para Doença , Humanos , Melanoma/genética , Receptor Tipo 1 de Melanocortina/fisiologia , Fatores de Risco , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Fenômenos Fisiológicos da Pele/genética
11.
Cancers (Basel) ; 13(10)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065529

RESUMO

Advanced colorectal cancer (CRC) is highly metastatic and often results in peritoneal dissemination. The extracellular vesicles (EVs) released by cancer cells in the microenvironment are important mediators of tumor metastasis. We investigated the contribution of EV-mediated interaction between peritoneal mesothelial cells (MCs) and CRC cells in generating a pro-metastatic environment in the peritoneal cavity. Peritoneal MCs isolated from peritoneal lavage fluids displayed high CD44 expression, substantial mesothelial-to-mesenchymal transition (MMT) and released EVs that both directed tumor invasion and caused reprogramming of secretory profiles by increasing TGF-ß1 and uPA/uPAR expression and MMP-2/9 activation in tumor cells. Notably, the EVs released by tumor cells induced apoptosis by activating caspase-3, peritoneal MC senescence, and MMT, thereby augmenting the tumor-promoting potential of these cells in the peritoneal cavity. By using pantoprazole, we reduced the biogenesis of EVs and their pro-tumor functions. In conclusion, our findings provided evidence of underlying mechanisms of CRC dissemination driven by the interaction of peritoneal MCs and tumor cells via the EVs released in the peritoneal cavity, which may have important implications for the clinical management of patients.

12.
J Immunother Cancer ; 9(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972390

RESUMO

BACKGROUND: Emerging evidence has highlighted the importance of extracellular vesicle (EV)-based biomarkers of resistance to immunotherapy with checkpoint inhibitors in metastatic melanoma. Considering the tumor-promoting implications of urokinase-type plasminogen activator receptor (uPAR) signaling, this study aimed to assess uPAR expression in the plasma-derived EVs of patients with metastatic melanoma to determine its potential correlation with clinical outcomes. METHODS: Blood samples from 71 patients with metastatic melanoma were collected before initiating immunotherapy. Tumor-derived and immune cell-derived EVs were isolated and analyzed to assess the relative percentage of uPAR+ EVs. The associations between uPAR and clinical outcomes, sex, BRAF status, baseline lactate dehydrogenase levels and number of metastatic sites were assessed. RESULTS: Responders had a significantly lower percentage of tumor-derived, dendritic cell (DC)-derived and CD8+ T cell-derived uPAR +EVs at baseline than non-responders. The Kaplan-Meier survival curves for the uPAR+EV quartiles indicated that higher levels of melanoma-derived uPAR+ EVs were strongly correlated with poorer progression-free survival (p<0.0001) and overall survival (p<0.0001). We also found a statistically significant correlation between lower levels of uPAR+ EVs from both CD8+ T cells and DCs and better survival. CONCLUSIONS: Our results indicate that higher levels of tumor-derived, DC-derived and CD8+ T cell-derived uPAR+ EVs in non-responders may represent a new biomarker of innate resistance to immunotherapy with checkpoint inhibitors. Moreover, uPAR+ EVs represent a new potential target for future therapeutic approaches.


Assuntos
Biomarcadores Tumorais/sangue , Resistencia a Medicamentos Antineoplásicos , Vesículas Extracelulares/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/tratamento farmacológico , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , Neoplasias Cutâneas/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vesículas Extracelulares/imunologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Melanoma/sangue , Melanoma/imunologia , Melanoma/secundário , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Fatores de Tempo , Resultado do Tratamento
13.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672425

RESUMO

Prostate cancer is one of the most common malignancies in men. It is characterized by a high molecular genomic heterogeneity and, thus, molecular subtypes, that, to date, have not been used in clinical practice. In the present paper, we aimed to better stratify prostate cancer patients through the selection of robust long non-coding RNAs. To fulfill the purpose of the study, a bioinformatic approach focused on feature selection applied to a TCGA dataset was used. In such a way, LINC00668 and long non-coding(lnc)-SAYSD1-1, able to discriminate ERG/not-ERG subtypes, were demonstrated to be positive prognostic biomarkers in ERG-positive patients. Furthermore, we performed a comparison between mutated prostate cancer, identified as "classified", and a group of patients with no peculiar genomic alteration, named "not-classified". Moreover, LINC00920 lncRNA overexpression has been linked to a better outcome of the hormone regimen. Through the feature selection approach, it was found that the overexpression of lnc-ZMAT3-3 is related to low-grade patients, and three lncRNAs: lnc-SNX10-87, lnc-AP1S2-2, and ADPGK-AS1 showed, through a co-expression analysis, significant correlation values with potentially druggable pathways. In conclusion, the data mining of publicly available data and robust bioinformatic analyses are able to explore the unknown biology of malignancies.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Masculino , Prognóstico , Neoplasias da Próstata/mortalidade , Mapas de Interação de Proteínas/genética , RNA Mensageiro , Regulador Transcricional ERG/genética
14.
Cancers (Basel) ; 14(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35008170

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents a great challenge to the successful delivery of the anticancer drugs. The intrinsic characteristics of the PDAC microenvironment and drugs resistance make it suitable for therapeutic approaches with stimulus-responsive drug delivery systems (DDSs), such as pH, within the tumor microenvironment (TME). Moreover, the high expression of uPAR in PDAC can be exploited for a drug receptor-mediated active targeting strategy. Here, a pH-responsive and uPAR-targeted Gemcitabine (Gem) DDS, consisting of polymeric micelles (Gem@TpHResMic), was formulated by microfluidic technique to obtain a preparation characterized by a narrow size distribution, good colloidal stability, and high drug-encapsulation efficiency (EE%). The Gem@TpHResMic was able to perform a controlled Gem release in an acidic environment and to selectively target uPAR-expressing tumor cells. The Gem@TpHResMic displayed relevant cellular internalization and greater antitumor properties than free Gem in 2D and 3D models of pancreatic cancer, by generating massive damage to DNA, in terms of H2AX phosphorylation and apoptosis induction. Further investigation into the physiological model of PDAC, obtained by a co-culture of tumor spheroids and cancer-associated fibroblast (CAF), highlighted that the micellar system enhanced the antitumor potential of Gem, and was demonstrated to overcome the TME-dependent drug resistance. In vivo investigation is warranted to consider this new DDS as a new approach to overcome drug resistance in PDAC.

15.
Biomed Pharmacother ; 133: 111006, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33202284

RESUMO

The crosstalk between Notch and MAPK pathway plays a role in MEK inhibitor resistance in BRAFV600E metastatic melanoma (MM) and promotes migration in GNAQQ209L uveal melanoma (UM) cells. We determined the cytotoxicity of combinatorial inhibition of MEK and Notch by cobimetinib and γ-secretase inhibitor (GSI) nirogacestat, in BRAFV600E and BRAF wt MM and GNAQQ209L UM cells displaying different Erk1/2 and Notch activation status, with the aim to elucidate the impact of Notch signaling in the response to MEK inhibitor. Overall the combination was synergic in BRAFV600E MM and GNAQQ209L UM cells and antagonistic in BRAF wt one. Focusing on UM cells, we found that cobimetinib resulted in G0/G1 phase arrest and apoptosis induction, whereas the combination with GSI increased treatment efficacy by inducing a senescent-like state of cells and by blocking migration towards liver cancer cells. Mechanistically, this was reflected in a strong reduction of cyclin D1, in the inactivation of retinoblastoma protein and in the increase of p27KIP1 expression levels. Of note, each drug alone prevented Notch signaling activation resulting in inhibition of c-jun(Ser63) and Hes-1 expression. The combination achieved the strongest inhibition on Notch signaling and on both c-jun(Ser63) and Erk1/2 activation level. In conclusion we unveiled a coordinate action of MAPK and Notch signaling in promoting proliferation of BRAFV600E MM and GNAQQ209L UM cells. Remarkably, the simultaneous inhibition of MEK and Notch signaling highlighted a role for the second pathway in protecting cells against senescence in GNAQQ209L UM cells treated with the MEK inhibitor.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Azetidinas/farmacologia , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Receptores Notch/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Uveais/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Ativação Enzimática , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células Hep G2 , Humanos , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica , Fosforilação , Proteínas Proto-Oncogênicas B-raf/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Uveais/enzimologia , Neoplasias Uveais/genética , Neoplasias Uveais/patologia
16.
Cancers (Basel) ; 12(9)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911687

RESUMO

Cutaneous squamous cell carcinoma (CSCC) is the most common keratinocyte-derived skin cancer in the Caucasian population. Exposure to UV radiations (UVRs) represents the main risk carcinogenesis, causing a considerable accumulation of DNA damage in epidermal keratinocytes with an uncontrolled hyperproliferation and tumor development. The limited and rarely durable response of CSCC to the current therapeutic options has led researchers to look for new therapeutic strategies. Recently, the multi-omics approaches have contributed to the identification and prediction of the key role of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), circularRNAs (circRNAs) and long non-coding RNAs (lncRNAs) in the regulation of several cellular processes in different tumor types, including CSCC. ncRNAs can modulate transcriptional and post-transcriptional events by interacting either with each other or with DNA and proteins, such as transcription factors and RNA-binding proteins. In this review, the implication of ncRNAs in tumorigenesis and their potential role as diagnostic biomarkers and therapeutic targets in human CSCC are reported.

17.
Int J Mol Sci ; 21(18)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906812

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with poor outcomes largely due to its unique microenvironment, which is responsible for the low response to drugs and drug-resistance phenomena. This clinical need led us to explore new therapeutic approaches for systemic PDAC treatment by the utilization of two newly synthesized biphenylnicotinamide derivatives, PTA73 and PTA34, with remarkable antitumor activity in an in vitro PDAC model. Given their poor water solubility, inclusion complexes of PTA34 and PTA73 in Hydroxy-Propil-ß-Cyclodextrin (HP-ß-CD) were prepared in solution and at the solid state. Complexation studies demonstrated that HP-ß-CD is able to form stable host-guest inclusion complexes with PTA34 and PTA73, characterized by a 1:1 apparent formation constant of 503.9 M-1 and 369.2 M-1, respectively (also demonstrated by the Job plot), and by an increase in aqueous solubility of about 150 times (from 1.95 µg/mL to 292.5 µg/mL) and 106 times (from 7.16 µg/mL to 762.5 µg/mL), in the presence of 45% w/v of HP-ß-CD, respectively. In vitro studies confirmed the high antitumor activity of the complexed PTA34 and PTA73 towards PDAC cells, the strong G2/M phase arrest followed by induction of apoptosis, and thus their eligibility for PDAC therapy.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Humanos , Corpos de Inclusão/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Microambiente Tumoral/efeitos dos fármacos , Difração de Raios X/métodos , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
18.
Int J Mol Sci ; 21(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718103

RESUMO

There is a growing interest in the cytotoxic effects of bioactive glycoalkaloids, such as α-tomatine on tumor cells. Here, for the first time, we determine the antitumor potential of tomatine, a mixture of α-tomatine and dehydrotomatine, in metastatic melanoma (MM) cell lines harboring different BRAF and MC1R variants. We performed cytotoxicity experiments and annexin-V/propidium iodide staining to assess the apoptotic/necrotic status of the cells. ER stress and autophagy markers were revealed by Western Blot, whereas antiangiogenic and vascular-disrupting effects were evaluated through a capillary tube formation assay on matrigel and by ELISA kit for VEGF release determination. Cell invasion was determined by a Boyden chamber matrigel assay. Tomatine reduced 50% of cell viability and induced a concentration-dependent increase of apoptotic cells in the range of 0.5-1 µM in terms of α-tomatine. The extent of apoptosis was more than two-fold higher in V600BRAF-D184H/D184H MC1R cells than in BRAF wild-type cells and V600BRAF-MC1R wild-type cell lines. Additionally, tomatine increased the LC3I/II autophagy marker, p-eIF2α, and p-Erk1/2 levels in BRAF wild-type cells. Notably, tomatine strongly reduced cell invasion and melanoma-dependent angiogenesis by reducing VEGF release and tumor-stimulating effects on capillary tube formation. Collectively, our findings support tomatine as a potential antitumor agent in MM.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Sistema de Sinalização das MAP Quinases , Melanoma , Tomatina/farmacologia , Substituição de Aminoácidos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Mutação de Sentido Incorreto , Necrose , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo
19.
Sci Rep ; 10(1): 10465, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32591592

RESUMO

Standard chemotherapy for soft tissue sarcomas has shown limited efficacy. Here, we sought to evaluate whether ß-adrenergic receptor (ß-AR) signalling contributed to the progression of sarcomas and therapy resistance. To assess the translational potential of ß-adrenergic receptors, we performed immunohistochemical detection of ß1-AR, ß2-AR and ß3-AR in leiomyosarcoma, liposarcoma and angiosarcoma tissue specimens, reporting the results scored for the intensity. By using established and patient-derived sarcoma cells, we demonstrated the antitumour potential of the pharmacological targeting of ß-ARs with the nonselective ß-blocker propranolol in such sarcomas. Of note, pharmacological ß-AR inhibition synergized with doxorubicin in inhibiting the cell viability of liposarcoma and leiomyosarcoma cells and increased the response to docetaxel in angiosarcoma- and solitary fibrous tumour (SFT)-patient-derived cells. Notably, the SFT patient was treated with the combination of propranolol and docetaxel, reporting prolonged disease control. Mechanistically, we found that propranolol reduced the activity of the multidrug resistance efflux pump P-gp, thereby increasing the intracellular doxorubicin concentration and antitumour activity. In addition, propranolol attenuated the Akt-dependent survival signal induced by doxorubicin and strongly reduced the activation of the NF-kB/COX-2 pathway, increasing cell sensitivity to docetaxel. Overall, our study highlighted the therapeutic potential of propranolol, alone or in rational combination therapies, for sarcoma treatment.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Propranolol/farmacologia , Sarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Doxorrubicina/farmacologia , Humanos , NF-kappa B/metabolismo , Projetos Piloto , Receptores Adrenérgicos beta/metabolismo , Sarcoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Tecidos Moles/tratamento farmacológico , Neoplasias de Tecidos Moles/metabolismo
20.
J Cell Physiol ; 235(11): 8085-8097, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31960422

RESUMO

In non-small cell lung cancer, sensitizing mutations in epidermal growth factor receptor (EGFR) or cMET amplification serve as good biomarkers for targeted therapies against EGFR or cMET, respectively. Here we aimed to determine how this different genetic background would affect the interaction between the EGFR-inhibitor erlotinib and the cMET-inhibitor crizotinib. To unravel the mechanism of synergy we investigated the effect of the drugs on various parameters, including cell cycle arrest, migration, protein phosphorylation, kinase activity, the expression of drug efflux pumps, intracellular drug concentrations, and live-cell microscopy. We observed additive effects in EBC-1, H1975, and HCC827, and a strong synergism in the HCC827GR5 cell line. This cell line is a clone of the HCC827 cells that harbor an EGFR exon 19 deletion and has been made resistant to the EGFR-inhibitor gefitinib, resulting in cMET amplification. Remarkably, the intracellular concentration of crizotinib was significantly higher in HCC827GR5 compared to the parental HCC827 cell line. Furthermore, live-cell microscopy with a pH-sensitive probe showed a differential reaction of the pH in the cytoplasm and the lysosomes after drug treatment in the HCC827GR5 in comparison with the HCC827 cells. This change in pH could influence the process of lysosomal sequestration of drugs. These results led us to the conclusion that lysosomal sequestration is involved in the strong synergistic reaction of the HCC827GR5 cell line to crizotinib-erlotinib combination. This finding warrants future clinical studies to evaluate whether genetic background and lysosomal sequestration could guide tailored therapeutic interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Lisossomos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crizotinibe/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação/genética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA