Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gels ; 8(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36547300

RESUMO

Intimal hyperplasia (IH) is an undesirable pathology occurring after peripheral or coronary bypass surgery. It involves the proliferation and migration of vascular smooth muscle cells, leading to a reduction in the diameter of the vascular lumen, which can lead to stenosis and graft failure. Topically applied atorvastatin (ATV) has been shown to slow down this process. To be effective, the drug delivery system should remain at the perivascular site for 5-8 weeks, corresponding to the progression of IH, and be capable of releasing an initial dose of the drug followed by a sustained release. Ideally, bioadhesion would anchor the gel to the application site. To meet these needs, we encapsulated ATV in a 2-component system: a hyaluronic acid-dopamine bioadhesive gel for rapid release and biodegradable microparticles for sustained release. The system was characterized by scanning electron microscopy, rheology, bioadhesion on porcine arteries, and a release profile. The rheological properties were adequate for perivascular application, and we demonstrated superior bioadhesion and cohesion compared to the control HA formulations. The release profile showed a burst, generated by free ATV, followed by sustained release over 8 weeks. A preliminary evaluation of subcutaneous biocompatibility in rats showed good tolerance of the gel. These results offer new perspectives on the perivascular application towards an effective solution for the prevention of IH.

2.
Pharmaceutics ; 14(9)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36145631

RESUMO

Anti-tumor responses can be achieved via the stimulation of the immune system, a therapeutic approach called cancer immunotherapy. Many solid tumor types are characterized by the presence of immune-suppressive tumor-associated macrophage (TAMs) cells within the tumor microenvironment (TME). Moreover, TAM infiltration is strongly associated with poor survival in solid cancer patients and hence a low responsiveness to cancer immunotherapy. Therefore, 2'3' Cyclic GMP-AMP (2'3' cGAMP) was employed for its ability to shift macrophages from pro-tumoral M2-like macrophages (TAM) to anti-tumoral M1. However, cGAMP transfection within macrophages is limited by the molecule's negative charge, poor stability and lack of targeting. To circumvent these barriers, we designed nanocarriers based on poly(amidoamine) dendrimers (PAMAM) grafted with D-glucuronic acid (Glu) for M2 mannose-mediated endocytosis. Two carriers were synthesized based on different dendrimers and complexed with cGAMP at different ratios. Orthogonal techniques were employed for synthesis (NMR, ninhydrin, and gravimetry), size (DLS, NTA, and AF4-DLS), charge (DLS and NTA), complexation (HPLC-UV and AF4-UV) and biocompatibility and toxicity (primary cells and hen egg chorioallantoic membrane model) evaluations in order to evaluate the best cGAMP carrier. The best formulation was selected for its low toxicity, biocompatibility, monodispersed distribution, affinity towards CD206 and ability to increase M1 (STAT1 and NOS2) and decrease M2 marker (MRC1) expression in macrophages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA