Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Psychiatry ; 28(2): 871-882, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36280751

RESUMO

Molecular and functional abnormalities of astrocytes have been implicated in the etiology and pathogenesis of schizophrenia (SCZ). In this study, we examined the proteome, inflammatory responses, and secretome effects on vascularization of human induced pluripotent stem cell (hiPSC)-derived astrocytes from patients with SCZ. Proteomic analysis revealed alterations in proteins related to immune function and vascularization. Reduced expression of the nuclear factor kappa B (NF-κB) p65 subunit was observed in these astrocytes, with no incremental secretion of cytokines after tumor necrosis factor alpha (TNF-α) stimulation. Among inflammatory cytokines, secretion of interleukin (IL)-8 was particularly elevated in SCZ-patient-derived-astrocyte-conditioned medium (ASCZCM). In a chicken chorioallantoic membrane (CAM) assay, ASCZCM reduced the diameter of newly grown vessels. This effect could be mimicked with exogenous addition of IL-8. Taken together, our results suggest that SCZ astrocytes are immunologically dysfunctional and may consequently affect vascularization through secreted factors.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Astrócitos/metabolismo , Proteômica , Esquizofrenia/metabolismo , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fenótipo
2.
Sci Rep ; 11(1): 10488, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006978

RESUMO

The increased healthspan afforded by coffee intake provides novel opportunities to identify new therapeutic strategies. Caffeine has been proposed to afford benefits through adenosine A2A receptors, which can control synaptic dysfunction underlying some brain disease. However, decaffeinated coffee and other main components of coffee such as chlorogenic acids, also attenuate brain dysfunction, although it is unknown if they control synaptic function. We now used electrophysiological recordings in mouse hippocampal slices to test if realistic concentrations of chlorogenic acids directly affect synaptic transmission and plasticity. 3-(3,4-dihydroxycinnamoyl)quinic acid (CA, 1-10 µM) and 5-O-(trans-3,4-dihydroxycinnamoyl)-D-quinic acid (NCA, 1-10 µM) were devoid of effect on synaptic transmission, paired-pulse facilitation or long-term potentiation (LTP) and long-term depression (LTD) in Schaffer collaterals-CA1 pyramidal synapses. However, CA and NCA increased the recovery of synaptic transmission upon re-oxygenation following 7 min of oxygen/glucose deprivation, an in vitro ischemia model. Also, CA and NCA attenuated the shift of LTD into LTP observed in hippocampal slices from animals with hippocampal-dependent memory deterioration after exposure to ß-amyloid 1-42 (2 nmol, icv), in the context of Alzheimer's disease. These findings show that chlorogenic acids do not directly affect synaptic transmission and plasticity but can indirectly affect other cellular targets to correct synaptic dysfunction. Unraveling the molecular mechanisms of action of chlorogenic acids will allow the design of hitherto unrecognized novel neuroprotective strategies.


Assuntos
Ácido Clorogênico/farmacologia , Hipocampo/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Neurotransmissores/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Neuropharmacology ; 166: 107782, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31756336

RESUMO

Although some studies have supported the effects of caffeine for treatment of Attention deficit and hyperactivity disorder (ADHD), there were no evidences about its effects at the neuronal level. In this study, we sought to find morphological alterations during in vitro development of frontal cortical neurons from Spontaneoulsy hypertensive rats (SHR, an ADHD rat model) and Wistar-Kyoto rats (WKY, control strain). Further, we investigated the effects of caffeine and adenosine A1 and A2A receptors (A1R and A2AR) signaling. Cultured cortical neurons from WKY and SHR were analyzed by immunostaining of microtubule-associated protein 2 (MAP-2) and tau protein after treatment with either caffeine, or A1R and A2AR agonists or antagonists. Besides, the involvement of PI3K and not PKA signaling was also assessed. Neurons from ADHD model displayed less neurite branching, shorter maximal neurite length and decreased axonal outgrowth. While caffeine recovered neurite branching and elongation from ADHD neurons via both PKA and PI3K signaling, A2AR agonist (CGS 21680) promoted more neurite branching via PKA signaling. The selective A2AR antagonist (SCH 58261) was efficient in recovering axonal outgrowth from ADHD neurons through PI3K and not PKA signaling. For the first time, frontal cortical neurons were isolated from ADHD model and they presented disturbances in the differentiation and outgrowth. By showing that caffeine and A2AR may act at neuronal level rescuing ADHD neurons outgrowth, our findings strengthen the potential of caffeine and A2AR receptors as an adjuvant for ADHD treatment.


Assuntos
Agonistas do Receptor A2 de Adenosina/uso terapêutico , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Cafeína/farmacologia , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/embriologia , Neurônios/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Lobo Frontal/patologia , Neurônios/patologia , Gravidez , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptor A2A de Adenosina , Xantinas/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31707092

RESUMO

Longitudinal and some experimental studies have showed the potential of caffeine to counteract some depressive behaviors and synaptic dysfunctions. In this study, we investigated the potential of caffeine in preventing behavioral outcomes, neurodegeneration and synaptic proteins alterations in a mice model of agitated depression by bilateral olfactory bulbectomy (OB). For this purpose, bulbectomized mice received caffeine (0.3 g/L and 1.0 g/L, drinking water), during the active cycle, for seven weeks (two before the surgery and throughout five weeks after OB). Caffeine prevented OB-induced hyperactivity and recognition memory impairment and rescue self care and motivational behavior. In the frontal cortex, bulbectomized mice presented increase in the adenosine A1 receptors (A1R) and GFAP, while adenosine A2A receptors (A2AR) increased in the hippocampus and striatum and SNAP-25 was decreased in frontal cortex and striatum. Caffeine increased A1R in the striatum of bulbectomized mice and in SHAM-water group caffeine increased A2AR in the striatum and decreased SNAP-25 in the frontal cortex. Astrogliosis observed in the polymorphic layer of the dentate gyrus of OB mice was prevented by caffeine as well as the neurodegeneration in the striatum and piriform cortex. Based on these behavioral and neurochemical evidences, caffeine confirms its efficacy in preventing neurodegeneration associated with memory impairment and may be considered as a promising therapeutic tool in the prophylaxis and/or treatment of depression.


Assuntos
Cafeína/uso terapêutico , Estimulantes do Sistema Nervoso Central/uso terapêutico , Depressão/prevenção & controle , Depressão/psicologia , Doenças Neurodegenerativas/prevenção & controle , Agitação Psicomotora/prevenção & controle , Agitação Psicomotora/psicologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/patologia , Gliose/patologia , Masculino , Transtornos da Memória/prevenção & controle , Transtornos da Memória/psicologia , Camundongos , Doenças Neurodegenerativas/patologia , Bulbo Olfatório , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Proteína 25 Associada a Sinaptossoma/metabolismo
5.
Eur J Neurosci ; 49(12): 1673-1683, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30667546

RESUMO

Attention deficit and hyperactivity disorder (ADHD) is characterized by impaired levels of hyperactivity, impulsivity, and inattention. Adenosine and endocannabinoid systems tightly interact in the modulation of dopamine signaling, involved in the neurobiology of ADHD. In this study, we evaluated the modulating effects of the cannabinoid and adenosine systems in a tolerance to delay of reward task using the most widely used animal model of ADHD. Spontaneous Hypertensive Rats (SHR) and Wistar-Kyoto rats were treated chronically or acutely with caffeine, a non-selective adenosine receptor antagonist, or acutely with a cannabinoid agonist (WIN55212-2, WIN) or antagonist (AM251). Subsequently, animals were tested in the tolerance to delay of reward task, in which they had to choose between a small, but immediate, or a large, but delayed, reward. Treatment with WIN decreased, whereas treatment with AM251 increased the choices of the large reward, selectively in SHR rats, indicating a CB1 receptor-mediated increase in impulsive behavior. An acute pre-treatment with caffeine blocked WIN effects. Conversely, a chronic treatment with caffeine increased the impulsive phenotype and potentiated the WIN effects. The results indicate that both cannabinoid and adenosine receptors modulate impulsive behavior in SHR: the antagonism of cannabinoid receptors might be effective in reducing impulsive symptoms present in ADHD; in addition, caffeine showed the opposite effects on impulsive behavior depending on the length of treatment. These observations are of particular importance to consider when therapeutic manipulation of CB1 receptors is applied to ADHD patients who consume coffee.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Cafeína/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Psicotrópicos/farmacologia , Animais , Benzoxazinas/farmacologia , Modelos Animais de Doenças , Masculino , Morfolinas/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Antagonistas de Receptores Purinérgicos P1/farmacologia , Pirazóis/farmacologia , Distribuição Aleatória , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
6.
Mol Neurobiol ; 56(5): 3145-3158, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30105669

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability worldwide, triggering chronic neurodegeneration underlying cognitive and mood disorder still without therapeutic prospects. Based on our previous observations that guanosine (GUO) attenuates short-term neurochemical alterations caused by TBI, this study investigated the effects of chronical GUO treatment in behavioral, molecular, and morphological disturbances 21 days after trauma. Rats subject to TBI displayed mood (anxiety-like) and memory dysfunction. This was accompanied by a decreased expression of both synaptic (synaptophysin) and plasticity proteins (BDNF and CREB), a loss of cresyl violet-stained neurons, and increased astrogliosis and microgliosis in the hippocampus. Notably, chronic GUO treatment (7.5 mg/kg i.p. daily starting 1 h after TBI) prevented all these TBI-induced long-term behavioral, neurochemical, and morphological modifications. This neuroprotective effect of GUO was abrogated in the presence of the adenosine A1 receptor antagonist DPCPX (1 mg/kg) but unaltered by the adenosine A2A receptor antagonist SCH58261 (0.05 mg/kg). These findings show that a chronic GUO treatment prevents the long-term mood and memory dysfunction triggered by TBI, which involves adenosinergic receptors.


Assuntos
Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Guanosina/uso terapêutico , Receptores Purinérgicos P1/metabolismo , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/complicações , Gliose/complicações , Gliose/patologia , Guanosina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Transtornos da Memória/complicações , Microglia/efeitos dos fármacos , Microglia/patologia , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , Plasticidade Neuronal/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ratos Wistar
7.
Cell Death Dis ; 9(3): 297, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463792

RESUMO

Despite the characteristic etiologies and phenotypes, different brain disorders rely on common pathogenic events. Glutamate-induced neurotoxicity is a pathogenic event shared by different brain disorders. Another event occurring in different brain pathological conditions is the increase of the extracellular ATP levels, which is now recognized as a danger and harmful signal in the brain, as heralded by the ability of P2 receptors (P2Rs) to affect a wide range of brain disorders. Yet, how ATP and P2R contribute to neurodegeneration remains poorly defined. For that purpose, we now examined the contribution of extracellular ATP and P2Rs to glutamate-induced neurodegeneration. We found both in vitro and in vivo that ATP/ADP through the activation of P2Y1R contributes to glutamate-induced neuronal death in the rat hippocampus. We found in cultured rat hippocampal neurons that the exposure to glutamate (100 µM) for 30 min triggers a sustained increase of extracellular ATP levels, which contributes to NMDA receptor (NMDAR)-mediated hippocampal neuronal death through the activation of P2Y1R. We also determined that P2Y1R is involved in excitotoxicity in vivo as the blockade of P2Y1R significantly attenuated rat hippocampal neuronal death upon the systemic administration of kainic acid or upon the intrahippocampal injection of quinolinic acid. This contribution of P2Y1R fades with increasing intensity of excitotoxic conditions, which indicates that P2Y1R is not contributing directly to neurodegeneration, rather behaving as a catalyst decreasing the threshold from which glutamate becomes neurotoxic. Moreover, we unraveled that such excitotoxicity process began with an early synaptotoxicity that was also prevented/attenuated by the antagonism of P2Y1R, both in vitro and in vivo. This should rely on the observed glutamate-induced calpain-mediated axonal cytoskeleton damage, most likely favored by a P2Y1R-driven increase of NMDAR-mediated Ca2+ entry selectively in axons. This may constitute a degenerative mechanism shared by different brain diseases, particularly relevant at initial pathogenic stages.


Assuntos
Ácido Glutâmico/toxicidade , Doenças Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Purinérgicos P2Y1/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular , Feminino , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Masculino , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/genética , Receptores Purinérgicos P2Y1/genética
8.
eNeuro ; 5(6)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627646

RESUMO

Neurodegeneration is a process transversal to neuropsychiatric diseases and the understanding of its mechanisms should allow devising strategies to prevent this irreversible step in brain diseases. Neurodegeneration caused by seizures is a critical step in the aggravation of temporal lobe epilepsy, but its mechanisms remain undetermined. Convulsions trigger an elevation of extracellular adenosine and upregulate adenosine A2A receptors (A2AR), which have been associated with the control of neurodegenerative diseases. Using the rat and mouse kainate model of temporal lobe epilepsy, we now tested whether A2AR control convulsions-induced hippocampal neurodegeneration. The pharmacological or genetic blockade of A2AR did not affect kainate-induced convulsions but dampened the subsequent neurotoxicity. This neurotoxicity began with a rapid A2AR upregulation within glutamatergic synapses (within 2 h), through local translation of synaptic A2AR mRNA. This bolstered A2AR-mediated facilitation of glutamate release and of long-term potentiation (LTP) in CA1 synapses (4 h), triggered a subsequent synaptotoxicity, heralded by decreased synaptic plasticity and loss of synaptic markers coupled to calpain activation (12 h), that predated overt neuronal loss (24 h). All modifications were prevented by the deletion of A2AR selectively in forebrain neurons. This shows that synaptic A2AR critically control synaptic excitotoxicity, which underlies the development of convulsions-induced neurodegeneration.


Assuntos
Convulsivantes/toxicidade , Ácido Caínico/toxicidade , Degeneração Neural/etiologia , Degeneração Neural/metabolismo , Neurônios/metabolismo , Receptor A2A de Adenosina/metabolismo , Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Tonsila do Cerebelo/fisiologia , Animais , Células Cultivadas , Epilepsia/complicações , Epilepsia/tratamento farmacológico , Epilepsia/etiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Excitação Neurológica/efeitos dos fármacos , Excitação Neurológica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Pirimidinas/uso terapêutico , Ratos , Ratos Wistar , Receptor A2A de Adenosina/genética , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Triazóis/uso terapêutico
9.
Mol Neurobiol ; 54(2): 1552-1563, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-26860412

RESUMO

Caffeine prophylactically prevents mood and memory impairments through adenosine A2A receptor (A2AR) antagonism. A2AR antagonists also therapeutically revert mood and memory impairments, but it is not known if caffeine is also therapeutically or only prophylactically effective. Since depression is accompanied by mood and memory alterations, we now explored if chronic (4 weeks) caffeine consumption (0.3 g/L) reverts mood and memory impairment in helpless mice (HM, 12 weeks old), a bred-based model of depression. HM displayed higher immobility in the tail suspension and forced swimming tests, greater anxiety in the elevated plus maze, and poorer memory performance (modified Y-maze and object recognition). HM also had reduced density of synaptic (synaptophysin, SNAP-25), namely, glutamatergic (vGluT1; -22 ± 7 %) and GABAergic (vGAT; -23 ± 8 %) markers in the hippocampus. HM displayed higher A2AR density (72 ± 6 %) in hippocampal synapses, an enhanced facilitation of hippocampal glutamate release by the A2AR agonist, CGS21680 (30 nM), and a larger LTP amplitude (54 ± 8 % vs. 21 ± 5 % in controls) that was restored to control levels (30 ± 10 %) by the A2AR antagonist, SCH58261 (50 nM). Notably, caffeine intake reverted memory deficits and reverted the loss of hippocampal synaptic markers but did not affect helpless or anxiety behavior. These results reinforce the validity of HM as an animal model of depression by showing that they also display reference memory deficits. Furthermore, caffeine intake selectively reverted memory but not mood deficits displayed by HM, which are associated with an increased density and functional impact of hippocampal A2AR controlling synaptic glutamatergic function.


Assuntos
Cafeína/uso terapêutico , Depressão/metabolismo , Ácido Glutâmico/metabolismo , Transtornos da Memória/metabolismo , Transtornos do Humor/metabolismo , Receptor A2A de Adenosina/biossíntese , Animais , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Depressão/tratamento farmacológico , Depressão/psicologia , Relação Dose-Resposta a Droga , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/psicologia , Camundongos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/psicologia , Especificidade da Espécie , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
10.
Physiol Behav ; 170: 47-53, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27890589

RESUMO

Caffeine is the psychostimulant most consumed worldwide. Anxiogenic effects of caffeine have been described in adult animals with controversial findings about its anxiogenic potential. Besides, the effects of caffeine on anxiety with aging are still poorly known. In this study, adult mice (6months old) started to receive caffeine (0.3 and 1.0mg/mL, drinking water) during 12-14months only in the light cycle and at weekdays. The open field (OF) and elevated plus maze (EPM) testing were used to determine the effects of caffeine on anxiety-related behavior in adult and aged mice (18-20months old). Because aging alters synaptic proteins, we also evaluated SNAP-25 (as a nerve terminals marker), GFAP (as an astrocyte marker) and adenosine A1 and A2A receptors levels in the cortex. According to the OF analysis, caffeine did not change both hypolocomotion and anxiety with aging. However, aged mice showed less anxiety behavior in the EPM, but after receiving caffeine (0.3mg/mL) during adulthood they were anxious as adult mice. While SNAP-25 and adenosine A2A receptors increased with aging, both GFAP and adenosine A1 receptors were not affected. Caffeine at moderate dose prevented the age-related increase of the SNAP-25, with no effect on adenosine A2A receptors. The absence of effect for the highest dose suggests that tolerance to caffeine may have developed over time. Aged mice showed high responsiveness to the OF, being difficult to achieve any effect of caffeine. On the other hand this substance sustained the adult anxious behavior over time in a less stressful paradigm, and this effect was coincident with changes in the SNAP-25, suggesting the involvement of this synaptic protein in the ability of caffeine to preserve changes related to emotionality with aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Atividade Motora/efeitos dos fármacos , Psicotrópicos/farmacologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Ansiedade/fisiopatologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Água Potável , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Camundongos , Atividade Motora/fisiologia , Receptor A2A de Adenosina/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo
11.
Eur J Pharmacol ; 772: 71-82, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26712379

RESUMO

It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors.


Assuntos
Analgésicos/administração & dosagem , Analgésicos/farmacologia , Guanina/administração & dosagem , Guanina/farmacologia , Injeções Espinhais , Inosina/administração & dosagem , Inosina/farmacologia , Analgésicos/efeitos adversos , Animais , Guanina/efeitos adversos , Inosina/efeitos adversos , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Dor/fisiopatologia , Purinas/líquido cefalorraquidiano , Receptores Purinérgicos P1/metabolismo
12.
Proc Natl Acad Sci U S A ; 112(25): 7833-8, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-26056314

RESUMO

The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.


Assuntos
Cafeína/farmacologia , Transtornos da Memória/prevenção & controle , Transtornos do Humor/prevenção & controle , Neurônios/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos , Estresse Psicológico/complicações , Animais , Masculino , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Humor/etiologia , Neurônios/metabolismo
13.
Neurochem Int ; 63(6): 594-609, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24055856

RESUMO

Caffeine is certainly the psychostimulant substance most consumed worldwide. Over the past years, chronic consumption of caffeine has been associated with prevention of cognitive decline associated to aging and mnemonic deficits of brain disorders. While its preventive effects have been reported extensively, the cognitive enhancer properties of caffeine are relatively under debate. Surprisingly, there are scarce detailed ontogenetic studies focusing on neurochemical parameters related to the effects of caffeine during prenatal and earlier postnatal periods. Furthermore, despite the large number of epidemiological studies, it remains unclear how safe is caffeine consumption during pregnancy and brain development. Thus, the purpose of this article is to review what is currently known about the actions of caffeine intake on neurobehavioral and adenosinergic system during brain development. We also reviewed other neurochemical systems affected by caffeine, but not only during brain development. Besides, some recent epidemiological studies were also outlined with the control of "pregnancy signal" as confounding variable. The idea is to tease out how studies on the impact of caffeine consumption during brain development deserve more attention and further investigation.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Cafeína/metabolismo , Estimulantes do Sistema Nervoso Central/metabolismo , Transtornos Cognitivos/prevenção & controle , Feminino , Neurotransmissores/metabolismo , Gravidez
14.
J Alzheimers Dis ; 34(2): 509-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23241554

RESUMO

Intracerebroventricular (icv) streptozotocin (STZ) administration induces pathological and behavioral alterations similar to those observed in Alzheimer's disease (AD) and is thus considered an experimental model of sporadic AD. Since caffeine (an adenosine receptor antagonist) and selective antagonists of adenosine A2A receptors modify the course of memory impairment in different amyloid-ß-based experimental models of AD, we now tested the impact of caffeine on STZ-induced dementia and associated neurodegeneration in the hippocampus as well as on the expression and density of adenosine receptors. Adult male rats received a bilateral infusion of saline or STZ (3 mg/kg, icv), which triggered memory deficits after four weeks, as gauged by impaired object recognition memory. This was accompanied by a reduced NeuN immunoreactivity in the hippocampal CA1 region and an increased expression and density of adenosine A2A receptors (A2AR), but not A1R, in the hippocampus. Caffeine consumption (1 g/L in the drinking water starting 2 weeks before the STZ challenge) prevented the STZ-induced memory impairment and neurodegeneration as well as the upregulation of A2AR. These findings provide the first demonstration that caffeine prevents sporadic dementia and implicate the control of central A2AR as its likely mechanism of action.


Assuntos
Cafeína/administração & dosagem , Demência/prevenção & controle , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Transtornos da Memória/prevenção & controle , Receptor A2A de Adenosina , Antagonistas de Receptores Adrenérgicos alfa 2/administração & dosagem , Animais , Demência/metabolismo , Demência/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Transtornos da Memória/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/biossíntese , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
15.
Neuropharmacology ; 64: 153-9, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22841916

RESUMO

Beneficial effects of caffeine on memory processes have been observed in animal models relevant to neurodegenerative diseases and aging, although the underlying mechanisms remain unknown. Because brain-derived neurotrophic factor (BDNF) is associated with memory formation and BDNF's actions are modulated by adenosine receptors, the molecular targets for the psychostimulant actions of caffeine, we here compare the effects of chronic caffeine (1 mg/mL drinking solution for 30 days) on short- and long term memory and on levels of hippocampal proBDNF, mature BDNF, TrkB and CREB in young (3 month old) and middle-aged (12 month old) rats. Caffeine treatment substantially reduced i) age-related impairments in the two types of memory in an inhibitory avoidance paradigm, and ii) parallel increases in hippocampal BDNF levels. In addition, chronic caffeine increased proBDNF and CREB concentrations, and decreased TrkB levels, in hippocampus regardless of age. These data provide new evidence in favor of the hypothesis that modifications in BDNF and related proteins in the hippocampus contribute to the pro-cognitive effects of caffeine on age-associated losses in memory encoding. This article is part of a Special Issue entitled 'Cognitive Enhancers'.


Assuntos
Envelhecimento , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cafeína/uso terapêutico , Disfunção Cognitiva/prevenção & controle , Hipocampo/metabolismo , Neurônios/metabolismo , Nootrópicos/uso terapêutico , Precursores de Proteínas/metabolismo , Animais , Aprendizagem da Esquiva , Comportamento Animal , Estimulantes do Sistema Nervoso Central/uso terapêutico , Disfunção Cognitiva/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Hipocampo/crescimento & desenvolvimento , Masculino , Memória de Longo Prazo , Memória de Curto Prazo , Inibição Neural , Ratos , Ratos Wistar , Receptor trkB/metabolismo
16.
Prog Neuropsychopharmacol Biol Psychiatry ; 36(1): 198-204, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22064330

RESUMO

Physical exercise protocols have varied widely across studies raising the question of whether there is an optimal intensity, duration and frequency that would produce maximal benefits in attenuating symptoms related to anxiety disorders. Although physical exercise causes modifications in neurotransmission systems, the involvement of neuromodulators such as adenosine has not been investigated after chronic exercise training. Anxiety-related behavior was assessed in the elevated plus-maze in adult and middle-aged rats submitted to 8 weeks of treadmill running 1, 3 or 7 days/week. The speed of running was weekly adjusted to maintain moderate intensity. The hippocampal adenosine A1 and A2A receptors densities were also assessed. Treadmill running protocol was efficient in increasing physical exercise capacity in adult and middle-aged rats. All frequencies of treadmill running equally decreased the time spent in the open arms in adult animals. Middle-aged treadmill control rats presented lower time spent in the open arms than adult treadmill control rats. However, treadmill running one day/week reversed this age effect. Adenosine A1 receptor was not changed between groups, but treadmill running counteracted the age-related increase in adenosine A2A receptors. Although treadmill running, independent from frequency, triggered anxiety in adult rats and treadmill running one day/week reversed the age-related anxiety, no consistent relationship was found with hippocampal adenosine receptors densities. Thus, our data suggest that as a complementary therapy in the management of mental disturbances, the frequency and intensity of physical exercise should be taken into account according to age. Besides, this is the first study reporting the modulation of adenosine receptors after chronic physical exercise, which could be important to prevent neurological disorders associated to increase in adenosine A2A receptors.


Assuntos
Ansiedade/metabolismo , Teste de Esforço , Hipocampo/metabolismo , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo , Corrida/fisiologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Ansiedade/psicologia , Teste de Esforço/métodos , Teste de Esforço/psicologia , Masculino , Ratos , Ratos Wistar , Corrida/psicologia
17.
Prog Neuropsychopharmacol Biol Psychiatry ; 35(1): 169-76, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21044657

RESUMO

Methylphenidate (MPH) is the preferred treatment used for attention-deficit/hyperactivity disorder (ADHD). Recently, misuse for MPH due to its apparent cognitive enhancer properties has been reported. Adenosine is a neuromodulator known to exert influence on the dopaminergic neurotransmission, which is the main pharmacological target of MPH. We have reported that an overdosage of MPH up-regulates adenosine A(1) receptors in the frontal cortex, but this receptor was not involved in its anxiolytic effects. In this study, the role of adenosine A(1) receptor was investigated on MPH-induced effects on aversive and recognition memory in adult mice. Adult mice received acute and chronic (15 days) administration of methylphenidate (5mg/kg, i.p.), or an acute overdosage (50mg/kg, i.p) in order to model misuse. Memory was assessed in the inhibitory avoidance and object recognition task. Acute administration 5mg/kg improved whereas 50mg/kg disrupted recognition memory and decreased performance in the inhibitory avoidance task. Chronic administration did not cause any effect on memory, but decreased adenosine A(1) receptors immunocontent in the frontal cortex. The selective adenosine A(1) receptor antagonist, (DPCPX 1mg/kg, i.p.), prevented methylphenidate-triggered recognition memory impairment. Our findings showed that recognition memory rather than aversive memory was differently affected by acute administration at both doses. Memory recognition was fully impaired by the overdosage, suggesting that misuse can be harmful for cognitive functions. The adenosinergic system via A(1) receptors may play a role in the methylphenidate actions probably by interfering with dopamine-enhancing properties of this drug.


Assuntos
Estimulantes do Sistema Nervoso Central/toxicidade , Transtornos da Memória , Metilfenidato/toxicidade , Receptor A1 de Adenosina/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Antagonistas do Receptor A1 de Adenosina/administração & dosagem , Análise de Variância , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Esquema de Medicação , Reação de Fuga/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Inibição Psicológica , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/prevenção & controle , Camundongos , Reconhecimento Psicológico/fisiologia , Xantinas/administração & dosagem
18.
Brain Res ; 1357: 62-9, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20699089

RESUMO

In recent years misuse of methylphenidate (MPH) has been reported. The main pharmacological target of methylphenidate is the dopaminergic system. Adenosine is a neuromodulator that influences the dopaminergic neurotransmission, but studies on MPH and adenosine are still lacking. In this study, adult mice were acutely treated with MPH (5mg/kg, i.p.) and to model misuse, they received an acute overdosage (50mg/kg, i.p). The involvement of adenosine A(1) receptors in anxiety-related behavior and locomotor and exploratory activity was examined. The administration of methylphenidate (5 and 50mg/kg) 30 min before the exposure to open field arena did not modify locomotor activity. The anxiolytic-like behavior was observed with both doses of MPH as revealed by the increase on the number of entries and the time spent in the open arms in the elevated plus-maze. Pre treatment with selective adenosine A(1) receptor antagonist (DPCPX 1mg/kg, i.p.) did not prevent anxiolytic effect caused by MPH 50mg/kg. Immunoblotting of frontal cortex and hippocampal extracts revealed that MPH 50mg/kg increased 88% adenosine A(1) receptor density in the frontal cortex. Extracts from hippocampus did not reveal any differences in the adenosine A(1) receptor density. Our findings ruled out the participation of adenosine A(1) receptors on the MPH-triggered anxiolytic effects. However, the density of adenosine A(1) receptors increased in a brain area strictly involved in the MPH-mediated effects. Thus, the adenosinergic system may play a role in the methylphenidate actions in the central nervous system.


Assuntos
Ansiedade/tratamento farmacológico , Lobo Frontal/metabolismo , Hipocampo/metabolismo , Metilfenidato/farmacologia , Atividade Motora/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Antagonistas do Receptor A1 de Adenosina/farmacologia , Análise de Variância , Animais , Ansiedade/metabolismo , Western Blotting , Estimulantes do Sistema Nervoso Central/farmacologia , Masculino , Camundongos , Atividade Motora/fisiologia , Xantinas/farmacologia
19.
J Neurosci ; 29(47): 14741-51, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19940169

RESUMO

Alzheimer's disease (AD) is characterized by memory impairment, neurochemically by accumulation of beta-amyloid peptide (namely Abeta(1-42)) and morphologically by an initial loss of nerve terminals. Caffeine consumption prevents memory dysfunction in different models, which is mimicked by antagonists of adenosine A(2A) receptors (A(2A)Rs), which are located in synapses. Thus, we now tested whether A(2A)R blockade prevents the early Abeta(1-42)-induced synaptotoxicity and memory dysfunction and what are the underlying signaling pathways. The intracerebral administration of soluble Abeta(1-42) (2 nmol) in rats or mice caused, 2 weeks later, memory impairment (decreased performance in the Y-maze and object recognition tests) and a loss of nerve terminal markers (synaptophysin, SNAP-25) without overt neuronal loss, astrogliosis, or microgliosis. These were prevented by pharmacological blockade [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261); 0.05 mg . kg(-1) . d(-1), i.p.; for 15 d] in rats, and genetic inactivation of A(2A)Rs in mice. Moreover, these were synaptic events since purified nerve terminals acutely exposed to Abeta(1-42) (500 nm) displayed mitochondrial dysfunction, which was prevented by A(2A)R blockade. SCH58261 (50 nm) also prevented the initial synaptotoxicity (loss of MAP-2, synaptophysin, and SNAP-25 immunoreactivity) and subsequent loss of viability of cultured hippocampal neurons exposed to Abeta(1-42) (500 nm). This A(2A)R-mediated control of neurotoxicity involved the control of Abeta(1-42)-induced p38 phosphorylation and was independent from cAMP/PKA (protein kinase A) pathway. Together, these results show that A(2A)Rs play a crucial role in the development of Abeta-induced synaptotoxicity leading to memory dysfunction through a p38 MAPK (mitogen-activated protein kinase)-dependent pathway and provide a molecular basis for the benefits of caffeine consumption in AD.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Transtornos da Memória/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Fragmentos de Peptídeos/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/toxicidade , Animais , Cafeína/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Regulação para Baixo/genética , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/toxicidade , Inibidores de Fosfodiesterase/farmacologia , Fosforilação/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Membranas Sinápticas/efeitos dos fármacos , Membranas Sinápticas/metabolismo , Triazóis/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Brain Res ; 1221: 134-40, 2008 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-18554575

RESUMO

Glutamate is the main excitatory neurotransmitter in brain involved in pathophysiology of several brain injuries. In this context, glutamate showed to stimulate ecto-nucleotidase activities in cerebellar granule cells increasing extracellular adenosine levels, an important neuromodulator in the CNS able to prevent cell damage. The organoselenium compounds, such as ebselen and diphenyl diselenide [(PhSe)(2)], display neuroprotective activities mediated at least in part by their antioxidant and anti-inflammatory properties. Ebselen was described to prevent glutamate-induced lipid peroxidation and cell death in cerebellar granule cells and (PhSe)(2) modify glutamatergic synapse parameters in vitro and in vivo. In the present study, we investigated the effects of ebselen or (PhSe)(2) on glutamate-induced stimulation of ecto-nucleotidase activities in rat cultured cerebellar granule cells. Glutamate increased nucleotide hydrolysis at lower concentrations (10 and 100 microM) than described in the literature and this effect was counteracted by both organoselenium compounds tested. Based on these results, we investigated the association of organoselenium effects with their antioxidant properties searching for redox site modulation by using the alkylant agent N-ethylmaleimide (NEM). Our results suggest that selenium compounds, as well as the well-known antioxidant trolox, can avoid the increase on glutamate-induced stimulation of ecto-nucleotidase activities probably due to their antioxidant properties.


Assuntos
Adenosina Trifosfatases/efeitos dos fármacos , Dano Encefálico Crônico/tratamento farmacológico , Degeneração Neural/tratamento farmacológico , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Selênio/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Antioxidantes/farmacologia , Azóis/farmacologia , Dano Encefálico Crônico/enzimologia , Dano Encefálico Crônico/fisiopatologia , Células Cultivadas , Cerebelo/citologia , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cromanos/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Etilmaleimida/farmacologia , Ácido Glutâmico/metabolismo , Isoindóis , Degeneração Neural/enzimologia , Degeneração Neural/fisiopatologia , Neurônios/enzimologia , Fármacos Neuroprotetores/metabolismo , Nucleotídeos/metabolismo , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Ratos , Selênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA