Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 9(12)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38912586

RESUMO

Immune therapy is the new frontier of cancer treatment. Therapeutic radiation is a known inducer of immune response and can be limited by immunosuppressive mediators including cyclooxygenase-2 (COX2) that is highly expressed in aggressive triple negative breast cancer (TNBC). A clinical cohort of TNBC tumors revealed poor radiation therapeutic efficacy in tumors expressing high COX2. Herein, we show that radiation combined with adjuvant NSAID (indomethacin) treatment provides a powerful combination to reduce both primary tumor growth and lung metastasis in aggressive 4T1 TNBC tumors, which occurs in part through increased antitumor immune response. Spatial immunological changes including augmented lymphoid infiltration into the tumor epithelium and locally increased cGAS/STING1 and type I IFN gene expression were observed in radiation-indomethacin-treated 4T1 tumors. Thus, radiation and adjuvant NSAID treatment shifts "immune desert phenotypes" toward antitumor M1/TH1 immune mediators in these immunologically challenging tumors. Importantly, radiation-indomethacin combination treatment improved local control of the primary lesion, reduced metastatic burden, and increased median survival when compared with radiation treatment alone. These results show that clinically available NSAIDs can improve radiation therapeutic efficacy through increased antitumor immune response and augmented local generation of cGAS/STING1 and type I IFNs.


Assuntos
Proteínas de Membrana , Transdução de Sinais , Linfócitos T Citotóxicos , Animais , Proteínas de Membrana/metabolismo , Camundongos , Feminino , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/radioterapia , Indometacina/farmacologia , Indometacina/uso terapêutico , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Ciclo-Oxigenase/uso terapêutico , Nucleotidiltransferases/metabolismo , Interferon Tipo I/metabolismo , Ciclo-Oxigenase 2/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Camundongos Endogâmicos BALB C
2.
Cancers (Basel) ; 15(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37568766

RESUMO

Bi-directional crosstalk between the tumor and the tumor microenvironment (TME) has been shown to increase the rate of tumor evolution and to play a key role in neoplastic progression, therapeutic resistance, and a patient's overall survival. Here, we set out to use a comprehensive liquid-biopsy analysis to study cancer and specific TME cells in circulation and their association with disease status. Cytokeratin+, CD45- circulating rare cells (CRCs) from nine breast and four prostate cancer patients were characterized through morphometrics, single-cell copy number analysis, and targeted multiplexed proteomics to delineate cancer cell lineage from other rare cells originating in the TME. We show that we can detect epithelial circulating tumor cells (EPI.CTC), CTCs undergoing epithelial-to-mesenchymal transition (EMT.CTC) and circulating endothelial cells (CECs) using a universal rare event detection platform (HDSCA). Longitudinal analysis of an index patient finds that CTCs are present at the time of disease progression, while CECs are predominately present at the time of stable disease. In a small cohort of prostate and breast cancer patients, we find high inter-patient and temporal intra-patient variability in the expression of tissue specific markers such as ER, HER2, AR, PSA and PSMA and EpCAM. Our study stresses the importance of the multi-omic characterization of circulating rare cells in patients with breast and prostate carcinomas, specifically highlighting overlapping and cell type defining proteo-genomic characteristics of CTCs and CECs.

3.
Cell Death Dis ; 14(5): 319, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169743

RESUMO

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER breast cancer has been established. However, the mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single-cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγ presents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8+ T cells were spatially analyzed in aggressive ER-, TNBC, and HER2 + breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8+ T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8+ T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis, suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ + IL1ß/TNFα increased the elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight into distinct neighborhoods where stroma-restricted CD8+ T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.


Assuntos
Interferon gama , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Feminino , Humanos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Interferon gama/genética , Interferon gama/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Fator de Necrose Tumoral alfa/metabolismo
4.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066331

RESUMO

A strong correlation between NOS2 and COX2 tumor expression and poor clinical outcomes in ER-breast cancer has been established. However, mechanisms of tumor induction of these enzymes are unclear. Analysis of The Cancer Genome Atlas (TCGA) revealed correlations between NOS2 and COX2 expression and Th1 cytokines. Herein, single cell RNAseq analysis of TNBC cells shows potent NOS2 and COX2 induction by IFNγ combined with IL1ß or TNFα. Given that IFNγ is secreted by cytolytic lymphocytes, which improve clinical outcomes, this role of IFNγpresents a dichotomy. To explore this conundrum, tumor NOS2, COX2, and CD8 + T cells were spatially analyzed in aggressive ER-, TNBC, and HER2+ breast tumors. High expression and clustering of NOS2-expressing tumor cells occurred at the tumor/stroma interface in the presence of stroma-restricted CD8 + T cells. High expression and clustering of COX2-expressing tumor cells extended into immune desert regions in the tumor core where CD8 + T cell penetration was limited or absent. Moreover, high NOS2-expressing tumor cells were proximal to areas with increased satellitosis suggestive of cell clusters with a higher metastatic potential. Further in vitro experiments revealed that IFNγ+IL1ß/TNFα increased elongation and migration of treated tumor cells. This spatial analysis of the tumor microenvironment provides important insight of distinct neighborhoods where stroma-restricted CD8 + T cells exist proximal to NOS2-expressing tumor niches that could have increased metastatic potential.

5.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187532

RESUMO

Estrogen receptor-negative (ER-) breast cancer is an aggressive breast cancer subtype with limited therapeutic options. Upregulated expression of both inducible nitric oxide synthase (NOS2) and cyclo-oxygenase (COX2) in breast tumors predicts poor clinical outcomes. Signaling molecules released by these enzymes activate oncogenic pathways, driving cancer stemness, metastasis, and immune suppression. The influence of tumor NOS2/COX2 expression on the landscape of immune markers using multiplex fluorescence imaging of 21 ER- breast tumors were stratified for survival. A powerful relationship between tumor NOS2/COX2 expression and distinct CD8+ T cell phenotypes was observed at 5 years post-diagnosis. These results were confirmed in a validation cohort using gene expression data showing that ratios of NOS2 to CD8 and COX2 to CD8 are strongly associated with poor outcomes in high NOS2/COX2-expressing tumors. Importantly, multiplex imaging identified distinct CD8+ T cell phenotypes relative to tumor NOS2/COX2 expression in Deceased vs Alive patient tumors at 5-year survival. CD8+NOS2-COX2- phenotypes defined fully inflamed tumors with significantly elevated CD8+ T cell infiltration in Alive tumors expressing low NOS2/COX2. In contrast, two distinct phenotypes including inflamed CD8+NOS2+COX2+ regions with stroma-restricted CD8+ T cells and CD8-NOS2-COX2+ immune desert regions with abated CD8+ T cell penetration, were significantly elevated in Deceased tumors with high NOS2/COX2 expression. These results were supported by applying an unsupervised nonlinear dimensionality-reduction technique, UMAP, correlating specific spatial CD8/NOS2/COX2 expression patterns with patient survival. Moreover, spatial analysis of the CD44v6 and EpCAM cancer stem cell (CSC) markers within the CD8/NOS2/COX2 expression landscape revealed positive correlations between EpCAM and inflamed stroma-restricted CD8+NOS2+COX2+ phenotypes at the tumor/stroma interface in deceased patients. Also, positive correlations between CD44v6 and COX2 were identified in immune desert regions in deceased patients. Furthermore, migrating tumor cells were shown to occur only in the CD8-NOS2+COX2+ regions, identifying a metastatic hot spot. Taken together, this study shows the strength of spatial localization analyses of the CD8/NOS2/COX2 landscape, how it shapes the tumor immune microenvironment and the selection of aggressive tumor phenotypes in distinct regions that lead to poor clinical outcomes. This technique could be beneficial for describing tumor niches with increased aggressiveness that may respond to clinically available NOS2/COX2 inhibitors or immune-modulatory agents.

6.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187660

RESUMO

Multiple immunosuppressive mechanisms exist in the tumor microenvironment that drive poor outcomes and decrease treatment efficacy. The co-expression of NOS2 and COX2 is a strong predictor of poor prognosis in ER- breast cancer and other malignancies. Together, they generate pro-oncogenic signals that drive metastasis, drug resistance, cancer stemness, and immune suppression. Using an ER- breast cancer patient cohort, we found that the spatial expression patterns of NOS2 and COX2 with CD3+CD8+PD1- T effector (Teff) cells formed a tumor immune landscape that correlated with poor outcome. NOS2 was primarily associated with the tumor-immune interface, whereas COX2 was associated with immune desert regions of the tumor lacking Teff cells. A higher ratio of NOS2 or COX2 to Teff was highly correlated with poor outcomes. Spatial analysis revealed that regional clustering of NOS2 and COX2 was associated with stromal-restricted Teff, while only COX2 was predominant in immune deserts. Examination of other immunosuppressive elements, such as PDL1/PD1, Treg, B7H4, and IDO1, revealed that PDL1/PD1, Treg, and IDO1 were primarily associated with restricted Teff, whereas B7H4 and COX2 were found in tumor immune deserts. Regardless of the survival outcome, other leukocytes, such as CD4 T cells and macrophages, were primarily in stromal lymphoid aggregates. Finally, in a 4T1 model, COX2 inhibition led to a massive cell infiltration, thus validating the hypothesis that COX2 is an essential component of the Teff exclusion process and, thus, tumor evasion. Our study indicates that NOS2/COX2 expression plays a central role in tumor immunosuppression. Our findings indicate that new strategies combining clinically available NOS2/COX2 inhibitors with various forms of immune therapy may open a new avenue for the treatment of aggressive ER-breast cancers.

7.
Redox Biol ; 58: 102529, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375380

RESUMO

Antitumor immune polarization is a key predictor of clinical outcomes to cancer therapy. An emerging concept influencing clinical outcome involves the spatial location of CD8+ T cells, within the tumor. Our earlier work demonstrated immunosuppressive effects of NOS2 and COX2 tumor expression. Here, we show that NOS2/COX2 levels influence both the polarization and spatial location of lymphoid cells including CD8+ T cells. Importantly, elevated tumor NOS2/COX2 correlated with exclusion of CD8+ T cells from the tumor epithelium. In contrast, tumors expressing low NOS2/COX2 had increased CD8+ T cell penetration into the tumor epithelium. Consistent with a causative relationship between these observations, pharmacological inhibition of COX2 with indomethacin dramatically reduced tumor growth of the 4T1 model of TNBC in both WT and Nos2- mice. This regimen led to complete tumor regression in ∼20-25% of tumor-bearing Nos2- mice, and these animals were resistant to tumor rechallenge. Th1 cytokines were elevated in the blood of treated mice and intratumoral CD4+ and CD8+ T cells were higher in mice that received indomethacin when compared to control untreated mice. Multiplex immunofluorescence imaging confirmed our phenotyping results and demonstrated that targeted Nos2/Cox2 blockade improved CD8+ T cell penetration into the 4T1 tumor core. These findings are consistent with our observations in low NOS2/COX2 expressing breast tumors proving that COX2 activity is responsible for limiting the spatial distribution of effector T cells in TNBC. Together these results suggest that clinically available NSAID's may provide a cost-effective, novel immunotherapeutic approach for treatment of aggressive tumors including triple negative breast cancer.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Camundongos , Animais , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Orientação Espacial , Imunoterapia , Progressão da Doença , Linfócitos/metabolismo , Indometacina/farmacologia , Indometacina/metabolismo , Indometacina/uso terapêutico
8.
NPJ Precis Oncol ; 6(1): 41, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729213

RESUMO

Little is known about the complexity and plasticity of circulating tumor cell (CTC) biology in different compartments of the fluid microenvironment during tumor metastasis. Here we integrated phenomics, genomics, and targeted proteomics to characterize CTC phenotypic and genotypic heterogeneity in paired peripheral blood (PB) and bone marrow aspirate (BMA) from a metastatic prostate cancer patient following the rapid disease progression, using the High-Definition Single Cell Assay 3.0 (HDSCA3.0). Uniquely, we identified a subgroup of genetically clonal CTCs that acquired a mesenchymal-like state and its presence was significantly associated with one subclone that emerged along the clonal lineage. Higher CTC abundance and phenotypic diversity were observed in the BMA than PB and differences in genomic alterations were also identified between the two compartments demonstrating spatial heterogeneity. Single cell copy number profiling further detected clonal heterogeneity within clusters of CTCs (also known as microemboli or aggregates) as well as phenotypic variations by targeted proteomics. Overall, these results identify epithelial and mesenchymal CTCs in the clonal lineage of an aggressive prostate cancer case and also demonstrate a single cell multi-omic approach to deconvolute the heterogeneity and association of CTC phenotype and genotype in multi-medium liquid biopsies of metastatic prostate cancer.

9.
Lung Cancer ; 154: 13-22, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33607458

RESUMO

OBJECTIVES: Cancer stem cells (CSCs) have been implicated in disease progression of aggressive cancers including small cell lung carcinoma (SCLC). Here, we have examined the possible contribution of CSCs to SCLC progression and aggressiveness. MATERIALS AND METHODS: GLC-14, GLC-16 and GLC-19 SCLC cell lines derived from one patient, representing increasing progressive stages of disease were used. CSC marker expressions was determined by RT-qPCR and western blotting analyses, and heterogeneity was studied by CSC marker expression by immunofluorescence microscopy and flow cytometry. Colony formation assays were used to assess stem cell properties and therapy sensitivity. RESULTS: Increasing expression of stem cell markers MYC, SOX2 and particularly CD44 were found in association with advancing disease. Single and overlapping expression of these markers indicated the presence of different CSC populations. The accumulation of more homogeneous double- and triple-positive CSC populations evolved with disease progression. Functional characterization of CSC properties affirmed higher proficiency of colony forming ability and increased resistance to γ-irradiation in GLC-16 and GLC-19 compared to GLC-14. GLC-19 colony formation was significantly inhibited by a human anti-CD44 antibody. CONCLUSION: The progressive increase of MYC, SOX2 and particularly CD44 expression that was accompanied with enhanced colony forming capacity and resistance in the in vitro GLC disease progression model, supports the potential clinical relevance of CSC populations in malignancy and disease relapse of SCLC.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Receptores de Hialuronatos , Neoplasias Pulmonares/diagnóstico , Células-Tronco Neoplásicas , Carcinoma de Pequenas Células do Pulmão/diagnóstico
10.
Converg Sci Phys Oncol ; 4(1)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30906572

RESUMO

Molecular analysis of circulating and disseminated tumor cells (CTCs/DTCs) has great potential as a means for continuous evaluation of prognosis and treatment efficacy in near-real time through minimally invasive liquid biopsies. To realize this potential, however, methods for molecular analysis of these rare cells must be developed and validated. Here, we describe the integration of imaging mass cytometry (IMC) using metal-labeled antibodies as implemented on the Fluidigm Hyperion Imaging System into the workflow of the previously established High Definition Single Cell Analysis (HD-SCA) assay for liquid biopsies, along with methods for image analysis and signal normalization. Using liquid biopsies from a metastatic prostate cancer case, we demonstrate that IMC can extend the reach of CTC characterization to include dozens of protein biomarkers, with the potential to understand a range of biological properties that could affect therapeutic response, metastasis and immune surveillance when coupled with simultaneous phenotyping of thousands of leukocytes.

11.
Clin Lung Cancer ; 17(6): 535-542, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27363902

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) has a poor prognosis, and even with localized (limited) disease, the 5-year survival has only been around 20%. Elevated levels of circulating tumor cells (CTCs) have been associated with a worse prognosis, and markers of cancer stem cells (CSCs) and epithelial to mesenchymal transition have been associated with increased chemoresistance and metastatic spread in SCLC. PATIENTS AND METHODS: The biopsy specimens of 38 SCLC patients were used for marker evaluation by immunohistochemistry. The markers for CSCs were CD44 and SOX2. The markers for epithelial to mesenchymal transition were E-cadherin, epithelial cell adhesion molecule, cytokeratins 8, 18, and 19, vimentin, and c-MET. Staining was scored as low (weak) or high (strong) intensity for SOX2, epithelial cell adhesion molecule, cytokeratins 8, 18, and 19, and c-MET and using the immunoreactive score for CD44, E-cadherin, and vimentin, expressed as low or high expression. RESULTS: High expression of c-MET (c-METH) and low expression of E-cadherin (E-cadL) showed a trend toward a better prognosis (P = .07 and P = .09, respectively). The combination of c-METH and E-cadL resulted in significantly better survival (P = .007). The tested markers were not associated with CTCs, although a trend was seen for c-METHE-cadL (P = .09) with low CTCs. The CSC markers SOX2 and CD44 were not associated with overall survival in this patient cohort. CONCLUSION: SCLC with a mesenchymal-like phenotype (c-METHE-cadL) is associated with longer survival and showed a trend toward lower CTCs.


Assuntos
Adenocarcinoma/patologia , Biomarcadores Tumorais/análise , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Adenocarcinoma/metabolismo , Idoso , Feminino , Seguimentos , Humanos , Técnicas Imunoenzimáticas , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Estadiamento de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Prognóstico , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/metabolismo , Taxa de Sobrevida
12.
PLoS One ; 10(12): e0145393, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26700636

RESUMO

Glioblastoma (GBM) is a highly infiltrative brain tumor in which cells with properties of stem cells, called glioblastoma stem cells (GSCs), have been identified. In general, the dominant view is that GSCs are responsible for the initiation, progression, invasion and recurrence of this tumor. In this study, we addressed the question whether the differentiation status of GBM cells is associated with their invasive capacity. For this, several primary GBM cell lines were used, cultured either as neurospheres known to enrich for GSCs or in medium supplemented with 10% FCS that promotes differentiation. The differentiation state of the cells was confirmed by determining the expression of stem cell and differentiation markers. The migration/invasion potential of these cells was tested using in vitro assays and intracranial mouse models. Interestingly, we found that serum-induced differentiation enhanced the invasive potential of GBM cells, which was associated with enhanced MMP9 expression. Chemical inhibition of MMP9 significantly reduced the invasive potential of differentiated cells in vitro. Furthermore, the serum-differentiated cells could revert back to an undifferentiated/stem cell state that were able to form neurospheres, although with a reduced efficiency as compared to non-differentiated counterparts. We propose a model in which activation of the differentiation program in GBM cells enhances their infiltrative potential and that depending on microenvironmental cues a significant portion of these cells are able to revert back to an undifferentiated state with enhanced tumorigenic potential. Thus, effective therapy should target both GSCs and differentiated offspring and targeting of differentiation-associated pathways may offer therapeutic opportunities to reduce invasive growth of GBM.


Assuntos
Diferenciação Celular , Glioblastoma/patologia , Metaloproteinase 9 da Matriz/fisiologia , Invasividade Neoplásica , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Soro/química
13.
Cancer Lett ; 332(2): 359-68, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20974517

RESUMO

Lung cancer is a devastating disease with a poor prognosis. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) represent different forms of lung cancer that are associated with distinct genetic causes and display different responses to therapy in the clinic. Whereas SCLC is often sensitive to chemotherapy at start of treatment, NSCLC are less chemo-sensitive. In NSCLC different histological subtypes are distinguished and increasing efforts are made to identify subtypes that respond to specific therapies, such as those harbouring epidermal growth factor receptor (EGFR) mutations that have benefit from treatment with EGFR inhibitors. Targeting of the apoptotic machinery represents another approach that aims to selectively kill cancer cells while sparing normal ones. Here we describe different ways that are currently explored to induce apoptosis in lung cancer cells, specifically pathways controlled by TNF-related apoptosis-inducing ligand (TRAIL), BCL-2 family members and apoptosis inhibitory proteins (IAPs). Preclinical studies are discussed and for some agents results from early clinical studies and future perspectives are considered.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Carcinoma de Pequenas Células do Pulmão/patologia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Survivina , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA