Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6703): eadm8693, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38935733

RESUMO

Measles virus (MeV) presents a public health threat that is escalating as vaccine coverage in the general population declines and as populations of immunocompromised individuals, who cannot be vaccinated, increase. There are no approved therapeutics for MeV. Neutralizing antibodies targeting viral fusion are one potential therapeutic approach but have not yet been structurally characterized or advanced to clinical use. We present cryo-electron microscopy (cryo-EM) structures of prefusion F alone [2.1-angstrom (Å) resolution], F complexed with a fusion-inhibitory peptide (2.3-Å resolution), F complexed with the neutralizing and protective monoclonal antibody (mAb) 77 (2.6-Å resolution), and an additional structure of postfusion F (2.7-Å resolution). In vitro assays and examination of additional EM classes show that mAb 77 binds prefusion F, arrests F in an intermediate state, and prevents transition to the postfusion conformation. These structures shed light on antibody-mediated neutralization that involves arrest of fusion proteins in an intermediate state.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Microscopia Crioeletrônica , Vírus do Sarampo , Proteínas Virais de Fusão , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/química , Vírus do Sarampo/imunologia , Vírus do Sarampo/química , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/química , Humanos , Conformação Proteica
2.
J Virol ; 98(3): e0187423, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38329336

RESUMO

Subacute sclerosing panencephalitis (SSPE) is a rare but fatal late neurological complication of measles, caused by persistent measles virus (MeV) infection of the central nervous system. There are no drugs approved for the treatment of SSPE. Here, we followed the clinical progression of a 5-year-old SSPE patient after treatment with the nucleoside analog remdesivir, conducted a post-mortem evaluation of the patient's brain, and characterized the MeV detected in the brain. The quality of life of the patient transiently improved after the first two courses of remdesivir, but a third course had no further clinical effect, and the patient eventually succumbed to his condition. Post-mortem evaluation of the brain displayed histopathological changes including loss of neurons and demyelination paired with abundant presence of MeV RNA-positive cells throughout the brain. Next-generation sequencing of RNA isolated from the brain revealed a complete MeV genome with mutations that are typically detected in SSPE, characterized by a hypermutated M gene. Additional mutations were detected in the polymerase (L) gene, which were not associated with resistance to remdesivir. Functional characterization showed that mutations in the F gene led to a hyperfusogenic phenotype predominantly mediated by N465I. Additionally, recombinant wild-type-based MeV with the SSPE-F gene or the F gene with the N465I mutation was no longer lymphotropic but instead efficiently disseminated in neural cultures. Altogether, this case encourages further investigation of remdesivir as a potential treatment of SSPE and highlights the necessity to functionally understand SSPE-causing MeV.IMPORTANCEMeasles virus (MeV) causes acute, systemic disease and remains an important cause of morbidity and mortality in humans. Despite the lack of known entry receptors in the brain, MeV can persistently infect the brain causing the rare but fatal neurological disorder subacute sclerosing panencephalitis (SSPE). SSPE-causing MeVs are characterized by a hypermutated genome and a hyperfusogenic F protein that facilitates the rapid spread of MeV throughout the brain. No treatment against SSPE is available, but the nucleoside analog remdesivir was recently demonstrated to be effective against MeV in vitro. We show that treatment of an SSPE patient with remdesivir led to transient clinical improvement and did not induce viral escape mutants, encouraging the future use of remdesivir in SSPE patients. Functional characterization of the viral proteins sheds light on the shared properties of SSPE-causing MeVs and further contributes to understanding how those viruses cause disease.


Assuntos
Monofosfato de Adenosina , Alanina , Vírus do Sarampo , Sarampo , Panencefalite Esclerosante Subaguda , Proteínas Virais , Pré-Escolar , Humanos , Monofosfato de Adenosina/administração & dosagem , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/uso terapêutico , Alanina/administração & dosagem , Alanina/análogos & derivados , Alanina/uso terapêutico , Autopsia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Progressão da Doença , Evolução Fatal , Genoma Viral/genética , Sequenciamento de Nucleotídeos em Larga Escala , Sarampo/complicações , Sarampo/tratamento farmacológico , Sarampo/virologia , Vírus do Sarampo/efeitos dos fármacos , Vírus do Sarampo/genética , Vírus do Sarampo/metabolismo , Proteínas Mutantes/análise , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Qualidade de Vida , RNA Viral/análise , RNA Viral/genética , Panencefalite Esclerosante Subaguda/tratamento farmacológico , Panencefalite Esclerosante Subaguda/etiologia , Panencefalite Esclerosante Subaguda/virologia , Proteínas Virais/análise , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
Sci Adv ; 9(6): eade2727, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763666

RESUMO

Paramyxoviruses-including important pathogens like parainfluenza, measles, and Nipah viruses-use a receptor binding protein [hemagglutinin-neuraminidase (HN) for parainfluenza] and a fusion protein (F), acting in a complex, to enter cells. We use cryo-electron tomography to visualize the fusion complex of human parainfluenza virus 3 (HN/F) on the surface of authentic clinical viruses at a subnanometer resolution sufficient to answer mechanistic questions. An HN loop inserts in a pocket on F, showing how the fusion complex remains in a ready but quiescent state until activation. The globular HN heads are rotated with respect to each other: one downward to contact F, and the other upward to grapple cellular receptors, demonstrating how HN/F performs distinct steps before F activation. This depiction of viral fusion illuminates potentially druggable targets for paramyxoviruses and sheds light on fusion processes that underpin wide-ranging biological processes but have not been visualized in situ or at the present resolution.


Assuntos
Infecções por Paramyxoviridae , Proteínas Virais de Fusão , Humanos , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/metabolismo , Proteína HN/química , Proteína HN/metabolismo , Receptores de Superfície Celular , Internalização do Vírus
4.
Viruses ; 15(1)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36680268

RESUMO

The cessation of measles virus (MeV) vaccination in more than 40 countries as a consequence of the COVID-19 pandemic is expected to significantly increase deaths due to measles. MeV can infect the central nervous system (CNS) and lead to lethal encephalitis. Substantial part of virus sequences recovered from patients' brain were mutated in the matrix and/or the fusion protein (F). Mutations of the heptad repeat domain located in the C terminal (HRC) part of the F protein were often observed and were associated to hyperfusogenicity. These mutations promote brain invasion as a hallmark of neuroadaptation. Wild-type F allows entry into the brain, followed by limited spreading compared with the massive invasion observed for hyperfusogenic MeV. Taking advantage of our ex vivo models of hamster organotypic brain cultures, we investigated how the hyperfusogenic mutations in the F HRC domain modulate virus distribution in CNS cells. In this study, we also identified the dependence of neural cells susceptibility on both their activation state and destabilization of the virus F protein. Type I interferon (IFN-I) impaired mainly astrocytes and microglial cells permissiveness contrarily to neurons, opening a new way of consideration on the development of treatments against viral encephalitis.


Assuntos
Sistema Nervoso Central , Vírus do Sarampo , Sarampo , Animais , Cricetinae , Humanos , Encéfalo , Sistema Nervoso Central/virologia , Interferons/metabolismo , Vírus do Sarampo/fisiologia , Proteínas Virais de Fusão/genética
5.
Nat Commun ; 13(1): 6439, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307480

RESUMO

Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.


Assuntos
COVID-19 , Sarampo , Animais , Humanos , Vírus do Sarampo , SARS-CoV-2 , COVID-19/prevenção & controle , Sarampo/prevenção & controle , Proteínas Virais de Fusão/metabolismo , Peptídeos/farmacologia , Macaca fascicularis/metabolismo
6.
Antiviral Res ; 207: 105401, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36049554

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a medically relevant tick-borne viral disease caused by the Bunyavirus, Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is endemic to Asia, the Middle East, South-eastern Europe, and Africa and is transmitted in enzootic cycles among ticks, mammals, and birds. Human infections are mostly subclinical or limited to mild febrile illness. Severe disease may develop, resulting in multi-organ failure, hemorrhagic manifestations, and case-fatality rates up to 30%. Despite the widespread distribution and life-threatening potential, no treatments have been approved for CCHF. Antiviral inhibitory peptides, which antagonize viral entry, are licensed for clinical use in certain viral infections and have been experimentally designed against human pathogenic bunyaviruses, with in vitro and in vivo efficacies. We designed inhibitory peptides against CCHFV with and without conjugation to various polyethylene glycol and sterol groups. These additions have been shown to enhance both cellular uptake and antiviral activity. Peptides were evaluated against pseudotyped and wild-type CCHFV via neutralization tests, Nairovirus fusion assays, and cytotoxicity profiling. Four peptides neutralized CCHFV with two of these peptides shown to inhibit viral fusion. This work represents the development of experimental countermeasures for CCHF, describes a nairovirus immunofluorescence fusion assay, and illustrates the utility of pseudotyped CCHFV for the screening of entry antagonists at low containment settings for CCHF.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Orthobunyavirus , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre Hemorrágica da Crimeia/epidemiologia , Humanos , Mamíferos , Peptídeos/farmacologia , Peptídeos/uso terapêutico , Polietilenoglicóis/uso terapêutico , Esteróis/uso terapêutico
7.
J Clin Invest ; 131(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609969

RESUMO

The capacity of respiratory viruses to undergo evolution within the respiratory tract raises the possibility of evolution under the selective pressure of the host environment or drug treatment. Long-term infections in immunocompromised hosts are potential drivers of viral evolution and development of infectious variants. We showed that intrahost evolution in chronic human parainfluenza virus 3 (HPIV3) infection in immunocompromised individuals elicited mutations that favored viral entry and persistence, suggesting that similar processes may operate across enveloped respiratory viruses. We profiled longitudinal HPIV3 infections from 2 immunocompromised individuals that persisted for 278 and 98 days. Mutations accrued in the HPIV3 attachment protein hemagglutinin-neuraminidase (HN), including the first in vivo mutation in HN's receptor binding site responsible for activating the viral fusion process. Fixation of this mutation was associated with exposure to a drug that cleaves host-cell sialic acid moieties. Longitudinal adaptation of HN was associated with features that promote viral entry and persistence in cells, including greater avidity for sialic acid and more active fusion activity in vitro, but not with antibody escape. Long-term infection thus led to mutations promoting viral persistence, suggesting that host-directed therapeutics may support the evolution of viruses that alter their biophysical characteristics to persist in the face of these agents in vivo.


Assuntos
Hospedeiro Imunocomprometido , Pneumopatias/virologia , Pulmão/virologia , Vírus da Parainfluenza 3 Humana/metabolismo , Infecções por Paramyxoviridae/virologia , Adulto , Sítios de Ligação , Análise Mutacional de DNA , Feminino , Frequência do Gene , Doença Enxerto-Hospedeiro/tratamento farmacológico , Células HEK293 , Humanos , Leucemia Mieloide Aguda , Mutação , Ácido Micofenólico/administração & dosagem , Ácido N-Acetilneuramínico/química , Vírus da Parainfluenza 3 Humana/genética , Infecções por Paramyxoviridae/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/virologia , Receptores Virais/metabolismo , Sirolimo/administração & dosagem , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Adulto Jovem
8.
Nat Commun ; 12(1): 5809, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608167

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.


Assuntos
Tronco Encefálico/virologia , Pulmão/virologia , Modelos Biológicos , SARS-CoV-2/patogenicidade , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/virologia , Animais , Antivirais/farmacologia , Tronco Encefálico/citologia , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Cricetinae , Imunidade Inata , Inflamação , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Neurônios/virologia , Técnicas de Cultura de Órgãos , Morte Celular Regulada , SARS-CoV-2/efeitos dos fármacos , Tropismo Viral
9.
Adv Virus Res ; 111: 1-29, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34663496

RESUMO

Parainfluenza viruses, members of the enveloped, negative-sense, single stranded RNA Paramyxoviridae family, impact global child health as the cause of significant lower respiratory tract infections. Parainfluenza viruses enter cells by fusing directly at the cell surface membrane. How this fusion occurs via the coordinated efforts of the two molecules that comprise the viral surface fusion complex, and how these efforts may be blocked, are the subjects of this chapter. The receptor binding protein of parainfluenza forms a complex with the fusion protein of the virus, remaining stably associated until a receptor is reached. At that point, the receptor binding protein actively triggers the fusion protein to undergo a series of transitions that ultimately lead to membrane fusion and viral entry. In recent years it has become possible to examine this remarkable process on the surface of viral particles and to begin to understand the steps in the transition of this molecular machine, using a structural biology approach. Understanding the steps in entry leads to several possible strategies to prevent fusion and inhibit infection.


Assuntos
Infecções por Paramyxoviridae , Internalização do Vírus , Humanos , Fusão de Membrana , Vírus da Parainfluenza 3 Humana , Proteínas Virais de Fusão/genética
10.
ACS Nano ; 15(8): 12794-12803, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34291895

RESUMO

Measles virus (MeV) infection remains a significant public health threat despite ongoing global efforts to increase vaccine coverage. As eradication of MeV stalls, and vulnerable populations expand, effective antivirals against MeV are in high demand. Here, we describe the development of an antiviral peptide that targets the MeV fusion (F) protein. This antiviral peptide construct is composed of a carbobenzoxy-d-Phe-l-Phe-Gly (fusion inhibitor peptide; FIP) conjugated to a lipidated MeV F C-terminal heptad repeat (HRC) domain derivative. Initial in vitro testing showed high antiviral potency and specific targeting of MeV F-associated cell plasma membranes, with minimal cytotoxicity. The FIP and HRC-derived peptide conjugates showed synergistic antiviral activities when administered individually. However, their chemical conjugation resulted in markedly increased antiviral potency. In vitro mechanistic experiments revealed that the FIP-HRC lipid conjugate exerted its antiviral activity predominantly through stabilization of the prefusion F, while HRC-derived peptides alone act predominantly on the F protein after its activation. Coupled with in vivo experiments showing effective prevention of MeV infection in cotton rats, FIP-HRC lipid conjugates show promise as potential MeV antivirals via specific targeting and stabilization of the prefusion MeV F structure.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Proteínas Virais de Fusão , Antivirais/farmacologia , Antivirais/química , Peptídeos/farmacologia , Peptídeos/química , Lipídeos/farmacologia
11.
mBio ; 12(3): e0079921, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061592

RESUMO

Measles virus (MeV) bearing a single amino acid change in the fusion protein (F)-L454W-was isolated from two patients who died of MeV central nervous system (CNS) infection. This mutation in F confers an advantage over wild-type virus in the CNS, contributing to disease in these patients. Using murine ex vivo organotypic brain cultures and human induced pluripotent stem cell-derived brain organoids, we show that CNS adaptive mutations in F enhance the spread of virus ex vivo. The spread of virus in human brain organoids is blocked by an inhibitory peptide that targets F, confirming that dissemination in the brain tissue is attributable to F. A single mutation in MeV F thus alters the fusion complex to render MeV more neuropathogenic. IMPORTANCE Measles virus (MeV) infection can cause serious complications in immunocompromised individuals, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE), another severe central nervous system (CNS) complication, develop even in the face of a systemic immune response. Both MIBE and SSPE are relatively rare but lethal. It is unclear how MeV causes CNS infection. We introduced specific mutations that are found in MIBE or SSPE cases into the MeV fusion protein to test the hypothesis that dysregulation of the viral fusion complex-comprising F and the receptor binding protein, H-allows virus to spread in the CNS. Using metagenomic, structural, and biochemical approaches, we demonstrate that altered fusion properties of the MeV H-F fusion complex permit MeV to spread in brain tissue.


Assuntos
Encéfalo/virologia , Vírus do Sarampo/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos , Animais , Encéfalo/citologia , Encéfalo/patologia , Doenças do Sistema Nervoso Central/virologia , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Masculino , Sarampo/virologia , Vírus do Sarampo/patogenicidade , Metagenômica , Camundongos , Neurônios/virologia , Organoides/citologia , Organoides/virologia , Células Vero , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/classificação , Proteínas Virais de Fusão/metabolismo
12.
J Am Chem Soc ; 143(15): 5958-5966, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825470

RESUMO

The lower respiratory tract infections affecting children worldwide are in large part caused by the parainfluenza viruses (HPIVs), particularly HPIV3, along with human metapneumovirus and respiratory syncytial virus, enveloped negative-strand RNA viruses. There are no vaccines for these important human pathogens, and existing treatments have limited or no efficacy. Infection by HPIV is initiated by viral glycoprotein-mediated fusion between viral and host cell membranes. A viral fusion protein (F), once activated in proximity to a target cell, undergoes a series of conformational changes that first extend the trimer subunits to allow insertion of the hydrophobic domains into the target cell membrane and then refold the trimer into a stable postfusion state, driving the merger of the viral and host cell membranes. Lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F inhibit infection by interfering with the structural transitions of the trimeric F assembly. Clinical application of this strategy, however, requires improving the in vivo stability of antiviral peptides. We show that the HRC peptide backbone can be modified via partial replacement of α-amino acid residues with ß-amino acid residues to generate α/ß-peptides that retain antiviral activity but are poor protease substrates. Relative to a conventional α-lipopeptide, our best α/ß-lipopeptide exhibits improved persistence in vivo and improved anti-HPIV3 antiviral activity in animals.


Assuntos
Lipopeptídeos/farmacologia , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Infecções Respiratórias/patologia , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Antivirais/química , Antivirais/metabolismo , Antivirais/farmacologia , Linhagem Celular , Colesterol/química , Desenho de Fármacos , Humanos , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Vírus da Parainfluenza 3 Humana/isolamento & purificação , Multimerização Proteica , Ratos , Infecções Respiratórias/virologia , Distribuição Tecidual , Temperatura de Transição , Proteínas Virais de Fusão/química , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos
13.
mBio ; 13(1): e0383121, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35164568

RESUMO

Human parainfluenza virus type 3 (HPIV-3) is a significant cause of lower respiratory tract infections, with the most severe disease in young infants, immunocompromised individuals, and the elderly. HPIV-3 infections are currently untreatable with licensed therapeutics, and prophylactic and therapeutic options are needed for patients at risk. To complement existing human airway models of HPIV-3 infection and develop an animal model to assess novel intervention strategies, we evaluated infection and transmission of HPIV-3 in ferrets. A well-characterized human clinical isolate (CI) of HPIV-3 engineered to express enhanced green fluorescent protein (rHPIV-3 CI-1-EGFP) was passaged on primary human airway epithelial cells (HAE) or airway organoids (AO) to avoid tissue culture adaptations. rHPIV3 CI-1-EGFP infection was assessed in vitro in ferret AO and in ferrets in vivo. Undifferentiated and differentiated ferret AO cultures supported rHPIV-3 CI-1-EGFP replication, but the ferret primary airway cells from AO were less susceptible and permissive than HAE. In vivo rHPIV-3 CI-1-EGFP replicated in the upper and lower airways of ferrets and targeted respiratory epithelial cells, olfactory epithelial cells, type I pneumocytes, and type II pneumocytes. The infection efficiently induced specific antibody responses. Taken together, ferrets are naturally susceptible to HPIV-3 infection; however, limited replication was observed that led to neither overt clinical signs nor ferret-to-ferret transmission. However, in combination with ferret AO, the ferret model of HPIV-3 infection, tissue tropism, and neutralizing antibodies complements human ex vivo lung models and can be used as a platform for prevention and treatment studies for this important respiratory pathogen. IMPORTANCE HPIV-3 is an important cause of pediatric disease and significantly impacts the elderly. Increasing numbers of immunocompromised patients suffer from HPIV-3 infections, often related to problems with viral clearance. There is a need to model HPIV-3 infections in vitro and in vivo to evaluate novel prophylaxis and treatment options. Currently existing animal models lack the potential for studying animal-to-animal transmission or the effect of immunosuppressive therapy. Here, we describe the use of the ferret model in combination with authentic clinical viruses to further complement human ex vivo models, providing a platform to study approaches to prevent and treat HPIV-3 infection. Although we did not detect ferret-to-ferret transmission in our studies, these studies lay the groundwork for further refinement of the ferret model to immunocompromised ferrets, allowing for studies of severe HPIV-3-associated disease. Such models for preclinical evaluation of prophylaxis and antivirals can contribute to reducing the global health burden of HPIV-3.


Assuntos
Furões , Vírus da Parainfluenza 3 Humana , Lactente , Criança , Humanos , Animais , Idoso , Vírus da Parainfluenza 3 Humana/fisiologia , Pulmão , Células Epiteliais , Tropismo
14.
PLoS Pathog ; 16(9): e1008883, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956394

RESUMO

Infection by human parainfluenza viruses (HPIVs) causes widespread lower respiratory diseases, including croup, bronchiolitis, and pneumonia, and there are no vaccines or effective treatments for these viruses. HPIV3 is a member of the Respirovirus species of the Paramyxoviridae family. These viruses are pleomorphic, enveloped viruses with genomes composed of single-stranded negative-sense RNA. During viral entry, the first step of infection, the viral fusion complex, comprised of the receptor-binding glycoprotein hemagglutinin-neuraminidase (HN) and the fusion glycoprotein (F), mediates fusion upon receptor binding. The HPIV3 transmembrane protein HN, like the receptor-binding proteins of other related viruses that enter host cells using membrane fusion, binds to a receptor molecule on the host cell plasma membrane, which triggers the F glycoprotein to undergo major conformational rearrangements, promoting viral entry. Subsequent fusion of the viral and host membranes allows delivery of the viral genetic material into the host cell. The intermediate states in viral entry are transient and thermodynamically unstable, making it impossible to understand these transitions using standard methods, yet understanding these transition states is important for expanding our knowledge of the viral entry process. In this study, we use cryo-electron tomography (cryo-ET) to dissect the stepwise process by which the receptor-binding protein triggers F-mediated fusion, when forming a complex with receptor-bearing membranes. Using an on-grid antibody capture method that facilitates examination of fresh, biologically active strains of virus directly from supernatant fluids and a series of biological tools that permit the capture of intermediate states in the fusion process, we visualize the series of events that occur when a pristine, authentic viral particle interacts with target receptors and proceeds from the viral entry steps of receptor engagement to membrane fusion.


Assuntos
Membrana Celular/metabolismo , Proteína HN/metabolismo , Vírus da Parainfluenza 3 Humana/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus , Animais , Membrana Celular/ultraestrutura , Chlorocebus aethiops , Humanos , Vírus da Parainfluenza 3 Humana/ultraestrutura , Células Vero
15.
ACS Infect Dis ; 6(8): 2017-2022, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32692914

RESUMO

Partial replacement of α-amino acid residues with ß-amino acid residues has been established as a strategy for preserving target-engagement by helix-forming polypeptides while altering other properties. The impact of ß-residue incorporation within polypeptides that adopt less regular conformations, however, has received less attention. The C-terminal heptad repeat (HRC) domains of fusion glycoproteins from pathogenic paramyxoviruses contain a segment that must adopt an extended conformation in order to coassemble with the N-terminal heptad repeat (HRN) domain in the postfusion state and drive a merger of the viral envelope with a target cell membrane. Here, we examine the impact of single α-to-ß substitutions within this extended N-terminal segment of an engineered HRC peptide designated VIQKI. Stabilities of hexameric coassemblies formed with the native human parainfluenza virus 3 (HPIV3) HRN have been evaluated, the structures of five coassemblies have been determined, and antiviral efficacies have been measured. Many sites within the extended segment show functional tolerance of α-to-ß substitution. These results offer a basis for future development of paramyxovirus infection inhibitors with novel biological activity profiles, possibly including resistance to proteolysis.


Assuntos
Proteínas Virais de Fusão , Internalização do Vírus , Antivirais/farmacologia , Humanos , Vírus da Parainfluenza 3 Humana , Peptídeos , Proteínas Virais de Fusão/genética
16.
J Am Chem Soc ; 141(32): 12648-12656, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31268705

RESUMO

Human parainfluenza virus 3 (HPIV3) and respiratory syncytial virus (RSV) cause lower respiratory infection in infants and young children. There are no vaccines for these pathogens, and existing treatments have limited or questionable efficacy. Infection by HPIV3 or RSV requires fusion of the viral and cell membranes, a process mediated by a trimeric fusion glycoprotein (F) displayed on the viral envelope. Once triggered, the pre-fusion form of F undergoes a series of conformational changes that first extend the molecule to allow for insertion of the hydrophobic fusion peptide into the target cell membrane and then refold the trimeric assembly into an energetically stable post-fusion state, a process that drives the merger of the viral and host cell membranes. Peptides derived from defined regions of HPIV3 F inhibit infection by HPIV3 by interfering with the structural transitions of the trimeric F assembly. Here we describe lipopeptides derived from the C-terminal heptad repeat (HRC) domain of HPIV3 F that potently inhibit infection by both HPIV3 and RSV. The lead peptide inhibits RSV infection as effectively as does a peptide corresponding to the RSV HRC domain itself. We show that the inhibitors bind to the N-terminal heptad repeat (HRN) domains of both HPIV3 and RSV F with high affinity. Co-crystal structures of inhibitors bound to the HRN domains of HPIV3 or RSV F reveal remarkably different modes of binding in the N-terminal segment of the inhibitor.


Assuntos
Lipopeptídeos/farmacologia , Vírus da Parainfluenza 3 Humana/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Inibidores de Proteínas Virais de Fusão/farmacologia , Proteínas Virais de Fusão/farmacologia , Sequência de Aminoácidos , Cristalografia por Raios X , Humanos , Lipopeptídeos/metabolismo , Testes de Sensibilidade Microbiana , Vírus da Parainfluenza 3 Humana/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Mucosa Respiratória/virologia , Vírus Sinciciais Respiratórios/química , Inibidores de Proteínas Virais de Fusão/metabolismo , Proteínas Virais de Fusão/metabolismo , Internalização do Vírus/efeitos dos fármacos
17.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30728259

RESUMO

A clinical isolate of measles virus (MeV) bearing a single amino acid alteration in the viral fusion protein (F; L454W) was previously identified in two patients with lethal sequelae of MeV central nervous system (CNS) infection. The mutation dysregulated the viral fusion machinery so that the mutated F protein mediated cell fusion in the absence of known MeV cellular receptors. While this virus could feasibly have arisen via intrahost evolution of the wild-type (wt) virus, it was recently shown that the same mutation emerged under the selective pressure of small-molecule antiviral treatment. Under these conditions, a potentially neuropathogenic variant emerged outside the CNS. While CNS adaptation of MeV was thought to generate viruses that are less fit for interhost spread, we show that two animal models can be readily infected with CNS-adapted MeV via the respiratory route. Despite bearing a fusion protein that is less stable at 37°C than the wt MeV F, this virus infects and replicates in cotton rat lung tissue more efficiently than the wt virus and is lethal in a suckling mouse model of MeV encephalitis even with a lower inoculum. Thus, either during lethal MeV CNS infection or during antiviral treatment in vitro, neuropathogenic MeV can emerge, can infect new hosts via the respiratory route, and is more pathogenic (at least in these animal models) than wt MeV.IMPORTANCE Measles virus (MeV) infection can be severe in immunocompromised individuals and lead to complications, including measles inclusion body encephalitis (MIBE). In some cases, MeV persistence and subacute sclerosing panencephalitis (SSPE) occur even in the face of an intact immune response. While they are relatively rare complications of MeV infection, MIBE and SSPE are lethal. This work addresses the hypothesis that despite a dysregulated viral fusion complex, central nervous system (CNS)-adapted measles virus can spread outside the CNS within an infected host.


Assuntos
Sistema Nervoso Central/virologia , Encefalite Viral , Corpos de Inclusão Viral , Pulmão/virologia , Vírus do Sarampo/fisiologia , Sarampo , Mutação de Sentido Incorreto , Proteínas Virais de Fusão , Replicação Viral , Substituição de Aminoácidos , Animais , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Modelos Animais de Doenças , Encefalite Viral/genética , Encefalite Viral/metabolismo , Encefalite Viral/transmissão , Humanos , Corpos de Inclusão Viral/genética , Corpos de Inclusão Viral/metabolismo , Pulmão/metabolismo , Sarampo/metabolismo , Sarampo/transmissão , Camundongos , Camundongos Transgênicos , Sigmodontinae , Células Vero , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
18.
J Virol ; 93(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30487282

RESUMO

During a measles virus (MeV) epidemic in 2009 in South Africa, measles inclusion body encephalitis (MIBE) was identified in several HIV-infected patients. Years later, children are presenting with subacute sclerosing panencephalitis (SSPE). To investigate the features of established MeV neuronal infections, viral sequences were analyzed from brain tissue samples of a single SSPE case and compared with MIBE sequences previously obtained from patients infected during the same epidemic. Both the SSPE and the MIBE viruses had amino acid substitutions in the ectodomain of the F protein that confer enhanced fusion properties. Functional analysis of the fusion complexes confirmed that both MIBE and SSPE F protein mutations promoted fusion with less dependence on interaction by the viral receptor-binding protein with known MeV receptors. While the SSPE F required the presence of a homotypic attachment protein, MeV H, in order to fuse, MIBE F did not. Both F proteins had decreased thermal stability compared to that of the corresponding wild-type F protein. Finally, recombinant viruses expressing MIBE or SSPE fusion complexes spread in the absence of known MeV receptors, with MIBE F-bearing viruses causing large syncytia in these cells. Our results suggest that alterations to the MeV fusion complex that promote fusion and cell-to-cell spread in the absence of known MeV receptors is a key property for infection of the brain.IMPORTANCE Measles virus can invade the central nervous system (CNS) and cause severe neurological complications, such as MIBE and SSPE. However, mechanisms by which MeV enters the CNS and triggers the disease remain unclear. We analyzed viruses from brain tissue of individuals with MIBE or SSPE, infected during the same epidemic, after the onset of neurological disease. Our findings indicate that the emergence of hyperfusogenic MeV F proteins is associated with infection of the brain. We also demonstrate that hyperfusogenic F proteins permit MeV to enter cells and spread without the need to engage nectin-4 or CD150, known receptors for MeV that are not present on neural cells.


Assuntos
Vírus do Sarampo/genética , Panencefalite Esclerosante Subaguda/genética , Proteínas Virais de Fusão/genética , Substituição de Aminoácidos , Animais , Encéfalo/virologia , Moléculas de Adesão Celular/metabolismo , Chlorocebus aethiops , Epidemias , Feminino , Genótipo , Células Gigantes/virologia , Células HEK293 , Humanos , Masculino , Sarampo/epidemiologia , Sarampo/metabolismo , Sarampo/virologia , Mutação , Neurônios/virologia , África do Sul , Panencefalite Esclerosante Subaguda/virologia , Células Vero , Proteínas Virais de Fusão/metabolismo
19.
ACS Nano ; 12(10): 9855-9865, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30230818

RESUMO

Measles remains one of the leading causes of child mortality worldwide and is re-emerging in some countries due to poor vaccine coverage, concomitant with importation of measles virus (MV) from endemic areas. The lack of specific chemotherapy contributes to negative outcomes, especially in infants or immunodeficient individuals. Fusion inhibitor peptides derived from the MV Fusion protein C-terminal Heptad Repeat (HRC) targeting MV envelope fusion glycoproteins block infection at the stage of entry into host cells, thus preventing viral multiplication. To improve efficacy of such entry inhibitors, we have modified a HRC peptide inhibitor by introducing properties of self-assembly into nanoparticles (NP) and higher affinity for both viral and cell membranes. Modification of the peptide consisted of covalent grafting with tocopherol to increase amphipathicity and lipophilicity (HRC5). One additional peptide inhibitor consisting of a peptide dimer grafted to tocopherol was also used (HRC6). Spectroscopic, imaging, and simulation techniques were used to characterize the NP and explore the molecular basis for their antiviral efficacy. HRC5 forms micellar stable NP while HRC6 aggregates into amorphous, loose, unstable NP. Interpeptide cluster bridging governs NP assembly into dynamic metastable states. The results are consistent with the conclusion that the improved efficacy of HRC6 relative to HRC5 can be attributed to NP instability, which leads to more extensive partition to target membranes and binding to viral target proteins.


Assuntos
Antivirais/farmacologia , Vírus do Sarampo/efeitos dos fármacos , Nanopartículas/química , Peptídeos/farmacologia , Tocoferóis/farmacologia , Antivirais/química , Testes de Sensibilidade Microbiana , Peptídeos/química , Tocoferóis/química , Proteínas Virais de Fusão/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
20.
J Infect Dis ; 218(2): 218-227, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29566184

RESUMO

Background: The emerging zoonotic paramyxovirus Nipah virus (NiV) causes severe respiratory and neurological disease in humans, with high fatality rates. Nipah virus can be transmitted via person-to-person contact, posing a high risk for epidemic outbreaks. However, a broadly applicable approach for human NiV outbreaks in field settings is lacking. Methods: We engineered new antiviral lipopeptides and analyzed in vitro fusion inhibition to identify an optimal candidate for prophylaxis of NiV infection in the lower respiratory tract, and we assessed antiviral efficiency in 2 different animal models. Results: We show that lethal NiV infection can be prevented with lipopeptides delivered via the respiratory route in both hamsters and nonhuman primates. By targeting retention of peptides for NiV prophylaxis in the respiratory tract, we avoid its systemic delivery in individuals who need only prevention, and thus we increase the safety of treatment and enhance utility of the intervention. Conclusions: The experiments provide a proof of concept for the use of antifusion lipopeptides for prophylaxis of lethal NiV. These results advance the goal of rational development of potent lipopeptide inhibitors with desirable pharmacokinetic and biodistribution properties and a safe effective delivery method to target NiV and other pathogenic viruses.


Assuntos
Quimioprevenção/métodos , Infecções por Henipavirus/prevenção & controle , Lipopeptídeos/administração & dosagem , Vírus Nipah/fisiologia , Doenças dos Primatas/prevenção & controle , Proteínas do Envelope Viral/antagonistas & inibidores , Inibidores de Proteínas Virais de Fusão/administração & dosagem , Animais , Broncopneumonia/prevenção & controle , Broncopneumonia/veterinária , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Mesocricetus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA