Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Cell Rep ; 39(1): 110602, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385755

RESUMO

Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSß, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSß recognizes and destabilizes G4 structures in vitro. These data suggest that MutSß destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.


Assuntos
Neoplasias , RNA Longo não Codificante , DNA/metabolismo , Humanos , Neoplasias/genética , Estruturas R-Loop , RNA Longo não Codificante/metabolismo , Telômero/metabolismo , Homeostase do Telômero
2.
Cells ; 11(4)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203293

RESUMO

Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Genes Supressores de Tumor , Recombinação Homóloga , Humanos , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Rep ; 36(9): 109649, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469738

RESUMO

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Assuntos
Encéfalo/enzimologia , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/enzimologia , Enzimas Multifuncionais/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Ligação Competitiva , Encéfalo/patologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
4.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330701

RESUMO

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , DNA , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Enzimas Multifuncionais/genética
5.
J Huntingtons Dis ; 10(1): 95-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579867

RESUMO

FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.


Assuntos
Reparo do DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Genes Modificadores/genética , Instabilidade Genômica/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Humanos
6.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31759821

RESUMO

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Assuntos
Replicação do DNA/fisiologia , Estruturas R-Loop/genética , Rad51 Recombinase/metabolismo , Linhagem Celular Tumoral , DNA Ligases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Células HeLa , Humanos , Estruturas R-Loop/fisiologia , Rad51 Recombinase/genética , Rad51 Recombinase/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/metabolismo , RecQ Helicases/fisiologia , Transcrição Gênica/genética
7.
Mol Cell ; 73(6): 1089-1091, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901561

RESUMO

In this issue of Molecular Cell, Zong et al. (2019) reveal RNF168-driven chromatin ubiquitylation as a key back-up mechanism to sustain homologous recombination (HR) independently of BRCA1. These findings provide new clues to carcinogenesis and cancer therapy in BRCA1 heterozygous mutation carriers.


Assuntos
Cromatina , Haploinsuficiência , Proteína BRCA1/genética , Linhagem Celular Tumoral , Recombinação Homóloga , Ubiquitinação
8.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30344097

RESUMO

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Replicação do DNA/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteína BRCA1 , Proteína BRCA2 , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA , Desoxirribonucleases , Endodesoxirribonucleases , Instabilidade Genômica/fisiologia , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Ligação Proteica
9.
Nat Commun ; 8(1): 2285, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263317

RESUMO

The financial support for this Article was not fully acknowledged. The Acknowledgements should have included the following: This study was in part supported by the Swiss National Foundation Grant No.: 31003A-156023 to Alessandro Sartori.

10.
Nat Commun ; 8(1): 1073, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051491

RESUMO

Interstrand cross-link (ICL) hypersensitivity is a characteristic trait of Fanconi anemia (FA). Although FANCD2-associated nuclease 1 (FAN1) contributes to ICL repair, FAN1 mutations predispose to karyomegalic interstitial nephritis (KIN) and cancer rather than to FA. Thus, the biological role of FAN1 remains unclear. Because fork stalling in FAN1-deficient cells causes chromosomal instability, we reasoned that the key function of FAN1 might lie in the processing of halted replication forks. Here, we show that FAN1 contains a previously-uncharacterized PCNA interacting peptide (PIP) motif that, together with its ubiquitin-binding zinc finger (UBZ) domain, helps recruit FAN1 to ubiquitylated PCNA accumulated at stalled forks. This prevents replication fork collapse and controls their progression. Furthermore, we show that FAN1 preserves replication fork integrity by a mechanism that is distinct from BRCA2-dependent homologous recombination. Thus, targeting FAN1 activities and its interaction with ubiquitylated PCNA may offer therapeutic opportunities for treatment of BRCA-deficient tumors.


Assuntos
Proteína BRCA2/metabolismo , Exodesoxirribonucleases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína BRCA2/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Humanos , Enzimas Multifuncionais , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
11.
Nat Commun ; 5: 5379, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25359189

RESUMO

Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.


Assuntos
RNA Longo não Codificante/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcriptoma , Dano ao DNA , Perfilação da Expressão Gênica , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Metiltransferases/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Regulação para Cima
12.
J Natl Cancer Inst ; 103(16): 1236-51, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21799180

RESUMO

BACKGROUND: Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. METHODS: A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)-driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN(1/-), 205 hMYCN(+/1) mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan-Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. RESULTS: Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the "poor prognosis" expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). CONCLUSION: ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adolescente , Animais , Western Blotting , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação para Baixo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/metabolismo , Razão de Chances , Proteínas Oncogênicas/metabolismo , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , RNA Interferente Pequeno/metabolismo , Recidiva , Fatores de Tempo , Transfecção , Regulação para Cima , Adulto Jovem
13.
Mol Cancer Res ; 9(8): 1054-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21693596

RESUMO

Resistance to chemotherapeutic agents remains one of the major impediments to a successful treatment of chronic myeloid leukemia (CML). Misregulation of the activity of a specific group of ATP-binding cassette transporters (ABC) is responsible for reducing the intracellular concentration of drugs in leukemic cells. Moreover, a consistent body of evidence also suggests that ABC transporters play a role in cancer progression beyond the efflux of cytotoxic drugs. Despite a large number of studies that investigated the function of the ABC transporters, little is known about the transcriptional regulation of the ABC genes. Here, we present data showing that the oncoprotein c-MYC is a direct transcriptional regulator of a large set of ABC transporters in CML. Furthermore, molecular analysis carried out in CD34+ hematopoietic cell precursors of 21 CML patients reveals that the overexpression of ABC transporters driven by c-MYC is a peculiar characteristic of the CD34+ population in CML and was not found either in the population of mononuclear cells from which they had been purified nor in CD34+ cells isolated from healthy donors. Finally, we describe how the methylation state of CpG islands may regulate the access of c-MYC to ABCG2 gene promoter, a well-studied gene associated with multidrug resistance in CML, hence, affecting its expression. Taken together, our findings support a model in which c-MYC-driven transcriptional events, combined with epigenetic mechanisms, direct and regulate the expression of ABC genes with possible implications in tumor malignancy and drug efflux in CML.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Ilhas de CpG/genética , Citotoxinas , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Regiões Promotoras Genéticas , Transcrição Gênica
14.
Cancer Res ; 71(2): 404-12, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21123453

RESUMO

Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.


Assuntos
Histona Desacetilase 1/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Receptor trkA/genética , Receptores de Fator de Crescimento Neural/genética , Fator de Transcrição Sp1/genética , Células HEK293 , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Proto-Oncogênica N-Myc , Proteínas do Tecido Nervoso/biossíntese , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Receptor trkA/biossíntese , Receptores de Fator de Crescimento Neural/biossíntese , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Transfecção
15.
FEBS Lett ; 584(17): 3812-8, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20655916

RESUMO

Telomeres are heterochromatic structures at the ends of eukaryotic chromosomes. As other heterochromatin regions, telomeres are transcribed, from the subtelomeric region towards chromosome ends into the long non-coding RNA TERRA. Telomere transcription is a widespread phenomenon as it has been observed in species belonging to several kingdoms of the eukaryotic domain. TERRA is part of telomeric heterochromatin in addition to being present in the nucleoplasm. Here, we review the current knowledge of TERRA structure, biogenesis and turnover. In addition, we discuss presumed roles of this RNA during replication of telomeric DNA, heterochromatin formation and the regulation of telomerase.


Assuntos
RNA/genética , Telomerase/genética , Telômero/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Cromossomos/genética , Dano ao DNA , Replicação do DNA/genética , Heterocromatina/genética , Humanos , Cinética , Mamíferos , Neoplasias/genética , RNA/metabolismo , RNA não Traduzido/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Telomerase/metabolismo , Telômero/genética , Transcrição Gênica
16.
Curr Pharm Des ; 16(4): 431-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20236072

RESUMO

Nitric oxide (NO) exerts its function in several cell and organ compartments. Recently, several lines of evidence have been accrued showing that NO can play a critical role in oncogenesis. Here we summarize some of these findings and highlight the role of NO as a possible target for antineoplastic drugs. Specifically, NO appears to affect some aspects of neuronal tumour progression, particularly the chemoresistance phenotype, through inhibition of MYC activity and expression of a large set of ATP binding cassette transporters. Here we provide lines of evidence supporting the view that MYCN can alter expression of several members of the ABC transporter family thus influencing the chemoresistance phenotype of neuroblastoma cells. Furthermore, we show that increased intracellular NO concentration either through addition of NO donors to culture medium or through forced expression of nNOS in neuroblastoma cells leads to decreased expression of MYCN and ABC drug transporter genes. Overall, data reviewed here and novel results presented, unveil a NO-MYCN-ABC transporters axis with important implication on development and control of the chemoresistance phenotype in neuronal tumours.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Neuroblastoma/metabolismo , Óxido Nítrico/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Neuroblastoma/patologia , Óxido Nítrico/farmacologia , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética
17.
J Biol Chem ; 285(25): 19532-43, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20233711

RESUMO

Increased expression of specific ATP-binding cassette (ABC) transporters is known to mediate the efflux of chemotherapeutic agents from cancer cells. Therefore, establishing how ABC transporter genes are controlled at their transcription level may help provide insight into the role of these multifaceted transporters in the malignant phenotype. We have investigated ABC transporter gene expression in a large neuroblastoma data set of 251 tumor samples. Clustering analysis demonstrated a strong association between differential ABC gene expression patterns in tumor samples and amplification of the MYCN oncogene, suggesting a correlation with MYCN function. Using expression profiling and chromatin immunoprecipitation studies, we show that MYCN oncoprotein coordinately regulates transcription of specific ABC transporter genes, by acting as either an activator or a repressor. Finally, we extend these notions to c-MYC showing that it can also regulate the same set of ABC transporter genes in other tumor cells through similar dynamics. Overall our findings provide insight into MYC-driven molecular mechanisms that contribute to coordinate transcriptional regulation of a large set of ABC transporter genes, thus affecting global drug efflux.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Perfilação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Modelos Genéticos , Fenótipo , Retinoblastoma/metabolismo , Transcrição Gênica
18.
Proc Natl Acad Sci U S A ; 104(47): 18682-7, 2007 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-18003922

RESUMO

Histone deacetylase (HDAC) inhibitors reactivate tumor suppressor gene transcription; induce cancer cell differentiation, growth arrest, and programmed cell death; and are among the most promising new classes of anticancer drugs. Myc oncoproteins can block cell differentiation and promote cell proliferation and malignant transformation, in some cases by modulating target gene transcription. Here, we show that tissue transglutaminase (TG2) was commonly reactivated by HDAC inhibitors in neuroblastoma and breast cancer cells but not normal cells and contributed to HDAC inhibitor-induced growth arrest. TG2 was the gene most significantly repressed by N-Myc in neuroblastoma cells in a cDNA microarray analysis and was commonly repressed by N-Myc in neuroblastoma cells and c-Myc in breast cancer cells. Repression of TG2 expression by N-Myc in neuroblastoma cells was necessary for the inhibitory effect of N-Myc on neuroblastoma cell differentiation. Dual step cross-linking chromatin immunoprecipitation and protein coimmunoprecipitation assays showed that N-Myc acted as a transrepressor by recruiting the HDAC1 protein to an Sp1-binding site in the TG2 core promoter in a manner distinct from it's action as a transactivator at E-Box binding sites. HDAC inhibitor treatment blocked the N-Myc-mediated HDAC1 recruitment and TG2 repression in vitro. In neuroblastoma-bearing N-Myc transgenic mice, HDAC inhibitor treatment induced TG2 expression and demonstrated marked antitumor activity in vivo. Taken together, our data indicate the critical roles of HDAC1 and TG2 in Myc-induced oncogenesis and have significant implications for the use of HDAC inhibitor therapy in Myc-driven oncogenesis.


Assuntos
Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcrição Gênica/genética , Transglutaminases/genética , Transglutaminases/metabolismo , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Regulação para Cima/efeitos dos fármacos
19.
Exp Cell Res ; 313(14): 2980-92, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17619016

RESUMO

The biological complexity of NGF action is achieved by binding two distinct neurotrophin receptors, TrkA and p75(NTR). While several reports have provided lines of evidence on the interaction between TrkA and p75(NTR) at the plasma membrane, much fewer data are available on the consequence of such an interaction in terms of intracellular signaling. In this study, we have focused on how p75(NTR) may affect TrkA downstream signaling with respect to neuronal differentiation. Here, we have shown that cooperation between p75(NTR) and TrkA results in an increased NGF-mediated TrkA autophosphorylation, leads to a sustained activation of ERK1/2 and accelerates neurite outgrowth. Interestingly, neurite outgrowth is concomitant with a selective enhancement of the AP-1 activity and the transcriptional activation of genes such as GAP-43 and p21(CIP/WAF), known to be involved in the differentiation process. Collectively, our results unveil a functional link between the specific expression profile of neurotrophin receptors in neuronal cells and the NGF-mediated regulation of the differentiation process possibly through a persistent ERKs activation and the selective control of the AP-1 activity.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21 , Proteína GAP-43 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/fisiologia , Receptor de Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Diferenciação Celular/fisiologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Ativação Enzimática , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Humanos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fator de Crescimento Neural/metabolismo , Neurônios/citologia , Fosforilação , Receptor de Fator de Crescimento Neural/genética , Receptor trkA/genética , Transdução de Sinais/fisiologia , Fator de Transcrição AP-1/genética , Transcrição Gênica , Células Tumorais Cultivadas
20.
Proc Natl Acad Sci U S A ; 102(34): 12117-22, 2005 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-16093321

RESUMO

N-Myc is a transcription factor that forms heterodimers with the protein Max and binds gene promoters by recognizing a DNA sequence, CACGTG, called E-box. The identification of N-myc target genes is an important step for understanding N-Myc biological functions in both physiological and pathological contexts. In this study, we describe the identification of N-Myc-responsive genes through chromatin immunoprecipitation and methylation-sensitive restriction analysis. Results show that N-Myc is a direct regulator of several identified genes, and that methylation of the CpG dinucleotide within the E-box prevents the access of N-Myc to gene promoters in vivo. Furthermore, methylation profile of the E-box within the promoters of EGFR and CASP8, two genes directly controlled by Myc, is cell type-specific, suggesting that differential E-box methylation may contribute to generating unique patterns of Myc-dependent transcription. This study illuminates a central role of DNA methylation in controlling N-Myc occupancy at gene promoters and modulating its transcriptional activity in cancer cells.


Assuntos
Metilação de DNA , Elementos E-Box/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Northern Blotting , Caspase 8 , Caspases/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Primers do DNA , Elementos E-Box/genética , Ensaio de Desvio de Mobilidade Eletroforética , Genes erbB-1/genética , Humanos , Immunoblotting , Luciferases , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA