Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(2): e0228415, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32084149

RESUMO

Ribose-cysteine is a synthetic compound designed to increase glutathione (GSH) synthesis. Low levels of GSH and the GSH-dependent enzyme, glutathione peroxidase (GPx), is associated with cardiovascular disease (CVD) in both mice and humans. Here we investigate the effect of ribose-cysteine on GSH, GPx, oxidised lipids and atherosclerosis development in apolipoprotein E-deficient (apoE-/-) mice. Female 12-week old apoE-/- mice (n = 15) were treated with 4-5 mg/day ribose-cysteine in drinking water for 8 weeks or left untreated. Blood and livers were assessed for GSH, GPx activity and 8-isoprostanes. Plasma alanine transferase (ALT) and lipid levels were measured. Aortae were quantified for atherosclerotic lesion area in the aortic sinus and brachiocephalic arch and 8-isoprostanes measured. Ribose-cysteine treatment significantly reduced ALT levels (p<0.0005) in the apoE-/- mice. Treatment promoted a significant increase in GSH concentrations in the liver (p<0.05) and significantly increased GPx activity in the liver and erythrocytes of apoE-/-mice (p<0.005). The level of 8-isoprostanes were significantly reduced in the livers and arteries of apoE-/- mice (p<0.05 and p<0.0005, respectively). Ribose-cysteine treatment showed a significant decrease in total and low density lipoprotein (LDL) cholesterol (p<0.05) with no effect on other plasma lipids with the LDL reduction likely through upregulation of scavenger receptor-B1 (SR-B1). Ribose-cysteine treatment significantly reduced atherosclerotic lesion area by >50% in both the aortic sinus and brachiocephalic branch (p<0.05). Ribose-cysteine promotes a significant GSH-based antioxidant effect in multiple tissues as well as an LDL-lowering response. These effects are accompanied by a marked reduction in atherosclerosis suggesting that ribose-cysteine might increase protection against CVD.


Assuntos
Antioxidantes/administração & dosagem , Apolipoproteínas E/deficiência , Aterosclerose/prevenção & controle , Cisteína/administração & dosagem , Substâncias Protetoras/administração & dosagem , Ribose/administração & dosagem , Animais , Antioxidantes/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Cisteína/metabolismo , Feminino , Lipídeos/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Oxirredução , Substâncias Protetoras/metabolismo , Ribose/metabolismo
2.
Biomed Res Int ; 2018: 4963942, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596094

RESUMO

BACKGROUND: Mouse models of hypercholesterolaemia have been used to identify arterial proteins involved in atherosclerosis. As the liver is extremely sensitive to dyslipidemia, one might expect major changes in the abundance of liver proteins in these models even before atherosclerosis develops. METHODS: Lipid levels were measured and a proteomic approach was used to quantify proteins in the livers of mice with an elevated low-density lipoprotein (LDL) and the presence of lipoprotein(a) [Lp(a)] but no atherosclerosis. RESULTS: The livers of Lp(a) mice showed an increased triglyceride but reduced phospholipid and oxidised lipid content. Two-dimensional gel electrophoresis and mass spectrometry analysis identified 24 liver proteins with significantly increased abundance in Lp(a) mice (P<0.05). A bioinformatic analysis of the 24 proteins showed the major effect was that of an enhanced antioxidant and lipid efflux response with significant increases in antioxidant (Park7, Gpx1, Prdx6, and Sod1) and lipid metabolism proteins (Fabp4, Acaa2, apoA4, and ApoA1). Interestingly, human liver cells treated with Lp(a) showed significant increases in Gpx1 and Prdx6 but not Sod1 or Park7. CONCLUSIONS: The presence of human LDL and Lp(a) in mice promotes an enhanced flux of lipids into the liver which elicits an antioxidant and lipid export response before the onset of atherosclerosis. The antioxidant response can be reproduced in human liver cells treated with Lp(a).


Assuntos
Metabolismo dos Lipídeos/fisiologia , Lipoproteína(a)/metabolismo , Fígado/metabolismo , Estresse Oxidativo/fisiologia , Animais , Antioxidantes/metabolismo , Aterosclerose/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Dislipidemias/metabolismo , Feminino , Células Hep G2 , Humanos , Hipercolesterolemia/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas/metabolismo , Proteômica/métodos
3.
J Lipid Res ; 56(7): 1318-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25852127

RESUMO

Elevated levels of lipoprotein (a) [Lp(a)] are a well-established risk factor for developing CVD. While Lp(a) levels are thought to be independent of other plasma lipoproteins, some trials have reported a positive association between Lp(a) and HDL. Whether Lp(a) has a direct effect on HDL is not known. Here we investigated to determine whether Lp(a) had any effect on the ABCA1 pathway of HDL production in liver cells. Incubation of HepG2 cells with Lp(a) upregulated the PPARγ protein by 1.7-fold and the liver X receptor α protein by 3-fold. This was accompanied by a 1.8-fold increase in ABCA1 protein and a 1.5-fold increase in cholesterol efflux onto apoA1. We showed that Lp(a) was internalized by HepG2 cells, however, the ABCA1 response to Lp(a) was mediated by the selective uptake of oxidized phospholipids (oxPLs) from Lp(a) via the scavenger receptor-B1 and not by Lp(a) internalization per se. We conclude that there is a biological connection between Lp(a) and HDL through the ability of Lp(a)'s oxPLs to upregulate HDL biosynthesis.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/genética , Antígenos CD36/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lipoproteína(a)/farmacologia , Fosfolipídeos/metabolismo , Regulação para Cima/efeitos dos fármacos , Células Hep G2 , Humanos , Oxirredução/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos
4.
Atherosclerosis ; 237(2): 725-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25463112

RESUMO

OBJECTIVE: D-ribose-L-cysteine (ribose-cysteine) is a cysteine analogue designed to increase the synthesis of glutathione (GSH). GSH is a cofactor for glutathione peroxidase (GPx), the redox enzyme that catalyses the reduction of lipid peroxides. A low GPx activity and increased oxidised lipids are associated with the development of cardiovascular disease (CVD). Here we aimed to investigate the effect of ribose-cysteine supplementation on GSH, GPx, lipid oxidation products and plasma lipids in vivo. METHODS: Human lipoprotein(a) [Lp(a)] transgenic mice were treated with 4 mg/day ribose-cysteine (0.16 g/kg body weight) for 8 weeks. Livers and blood were harvested from treated and untreated controls (n = 9 per group) and GSH concentrations, GPx activity, thiobarbituric acid reactive substances (TBARS), 8-isoprostanes and plasma lipid concentrations were measured. RESULTS: Ribose-cysteine increased GSH concentrations in the liver and plasma (P < 0.05). GPx activity was increased in both liver (1.7 fold, P < 0.01) and erythrocytes (3.5 fold, P < 0.05). TBARS concentrations in the liver, plasma and aortae were significantly reduced with ribose-cysteine (P < 0.01, P < 0.0005 and P < 0.01, respectively) as were the concentrations of 8-isoprostanes in the liver and aortae (P < 0.0005, P < 0.01, respectively). Ribose-cysteine treated mice showed significant decreases in LDL, Lp(a) and apoB concentrations (P < 0.05, P < 0.01 and P < 0.05, respectively), an effect which was associated with upregulation of the LDL receptor (LDLR). CONCLUSIONS: As ribose-cysteine lowers LDL, Lp(a) and oxidised lipid concentrations, it might be an ideal intervention to increase protection against the development of atherosclerosis.


Assuntos
Antioxidantes/química , Cisteína/química , Glutationa/química , Lipoproteína(a)/genética , Lipoproteínas LDL/sangue , Ribose/química , Animais , Apolipoproteínas B/sangue , Doenças Cardiovasculares/metabolismo , Dinoprosta/análogos & derivados , Dinoprosta/química , Feminino , Humanos , Lipídeos/sangue , Lipoproteína(a)/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Oxigênio/química , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
5.
Biochim Biophys Acta ; 1830(6): 3458-65, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23454352

RESUMO

BACKGROUND: Mitochondrial dysfunction contributes to degenerative neurological disorders, consequently there is a need for mitochondria-targeted therapies that are effective within the brain. One approach to deliver pharmacophores is by conjugation to the lipophilic triphenylphosphonium (TPP) cation that accumulates in mitochondria driven by the membrane potential. While this approach has delivered TPP-conjugated compounds to the brain, the amounts taken up are lower than by other organs. METHODS: To discover why uptake of hydrophobic TPP compounds by the brain is relatively poor, we assessed the role of the P-glycoprotein (Mdr1a/b) and breast cancer resistance protein (Bcrp) ATP binding cassette (ABC) transporters, which drive the efflux of lipophilic compounds from the brain thereby restricting the uptake of lipophilic drugs. We used a triple transgenic mouse model lacking two isoforms of P-glycoprotein (Mdr1a/1b) and the Bcrp. RESULTS: There was a significant increase in the uptake into the brain of two hydrophobic TPP compounds, MitoQ and MitoF, in the triple transgenics following intra venous (IV) administration compared to control mice. Greater amounts of the hydrophobic TPP compounds were also retained in the liver of transgenic mice compared to controls. The uptake into the heart, white fat, muscle and kidneys was comparable between the transgenic mice and controls. CONCLUSION: Efflux of hydrophobic TPP compounds by ABC transporters contributes to their lowered uptake into the brain and liver. GENERAL SIGNIFICANCE: These findings suggest that strategies to bypass ABC transporters in the BBB will enhance delivery of mitochondria-targeted antioxidants, probes and pharmacophores to the brain.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Compostos Organosselênicos/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Compostos Heterocíclicos/farmacocinética , Compostos Heterocíclicos/farmacologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/genética , Compostos Organofosforados/farmacocinética , Compostos Organofosforados/farmacologia , Compostos Organosselênicos/farmacologia , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
6.
Biochem J ; 400(1): 199-208, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-16948637

RESUMO

Lipophilic monocations can pass through phospholipid bilayers and accumulate in negatively-charged compartments such as the mitochondrial matrix, driven by the membrane potential. This property is used to visualize mitochondria, to deliver therapeutic molecules to mitochondria and to measure the membrane potential. In theory, lipophilic dications have a number of advantages over monocations for these tasks, as the double charge should lead to a far greater and more selective uptake by mitochondria, increasing their therapeutic potential. However, the double charge might also limit the movement of lipophilic dications through phospholipid bilayers and little is known about their interaction with mitochondria. To see whether lipophilic dications could be taken up by mitochondria and cells, we made a series of bistriphenylphosphonium cations comprising two triphenylphosphonium moieties linked by a 2-, 4-, 5-, 6- or 10-carbon methylene bridge. The 5-, 6- and 10-carbon dications were taken up by energized mitochondria, whereas the 2- and 4-carbon dications were not. The accumulation of the dication was greater than that of the monocation methyltriphenylphosphonium. However, the uptake of dications was only described by the Nernst equation at low levels of accumulation, and beyond a threshold membrane potential of 90-100 mV there was negligible increase in dication uptake. Interestingly, the 5- and 6-carbon dications were not accumulated by cells, due to lack of permeation through the plasma membrane. These findings indicate that conjugating compounds to dications offers only a minor increase over monocations in delivery to mitochondria. Instead, this suggests that it may be possible to form dications within mitochondria that then remain within the cell.


Assuntos
Membranas Intracelulares/metabolismo , Lipídeos/química , Mitocôndrias/metabolismo , Compostos Organofosforados/metabolismo , Compostos de Terfenil/metabolismo , Trifosfato de Adenosina/metabolismo , Algoritmos , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Humanos , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/fisiologia , Ionóforos/farmacologia , Células Jurkat , Bicamadas Lipídicas/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Hepáticas/fisiologia , Nigericina/farmacologia , Oniocompostos/química , Oniocompostos/metabolismo , Compostos Organofosforados/química , Cloreto de Potássio/farmacologia , Ratos , Rotenona/farmacologia , Radioisótopos de Rubídio/metabolismo , Compostos de Terfenil/química , Trítio/metabolismo , Compostos de Tritil/química , Compostos de Tritil/metabolismo , Desacopladores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA