Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nutrients ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37686723

RESUMO

The use of garlic (Allium sativum) for treating arterial hypertension has been recognized as effective for several decades. However, tolerance to treatment is low, and several technological modifications have been developed to improve its tolerability, such as the aging process at controlled temperature and humidity. This study aims to validate the antihypertensive effects of an optimized extract of aged black garlic with low doses of s-allyl-cysteine (SAC) in a Grade I hypertensive population with drug treatment. A randomized, triple-blind, placebo-controlled parallel trial was developed, where a daily supplementation with 0.25 mg/day of SAC for 12 weeks was performed. A reduction in systolic and diastolic blood pressure of 1.8 mmHg (0.7 to 4.1 95% CI) and 1.5 mmHg (0.3 to 3.0 95% CI), respectively, was observed. Similarly, an increase in blood nitric oxide (10.3 µM, 1.1 to 19.5 95% CI) and antioxidant capacity (7 × 10-3 µM TE/min, (1.2 to 13 × 10-3 95% CI) and a reduction in uric acid levels (-0.3 mg/dL, -0.5 to -0.001 95% CI) and ACE activity (-9.3 U/L; -18.4 to -0.4 95% CI) were observed. No changes in endothelial function and inflammatory cytokines were observed. It was concluded that low-dose SAC supplementation in an optimized black-garlic extract allows for an extra-significant reduction in blood pressure in a Grade I hypertensive population receiving drug treatment.


Assuntos
Produtos Biológicos , Alho , Hipertensão , Humanos , Anti-Hipertensivos/uso terapêutico , Antioxidantes , Hipertensão/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Antioxidants (Basel) ; 12(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36829852

RESUMO

One of the richest tissues in lipid content and diversity of the human body is the brain. The human brain is constitutively highly vulnerable to oxidative stress. This oxidative stress is a determinant in brain aging, as well as in the onset and progression of sporadic (late-onset) Alzheimer's disease (sAD). Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. Here, we explore the idea that ether lipids actively participate in the pathogenesis of sAD. Firstly, we evaluate the quantitative relevance of ether lipids in the human brain composition, as well as their role in the human brain evolution. Then, we analyze the implications of ether lipids in neural cell physiology, highlighting their inherent antioxidant properties. Finally, we discuss changes in ether lipid content associated with sAD and their physiopathological implications, and propose a mechanism that, as a vicious cycle, explains the potential significance of ether lipids in sAD.

3.
Dis Model Mech ; 15(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916061

RESUMO

To evaluate senescence mechanisms, including senescence-associated secretory phenotype (SASP), in the motor neuron disease model hSOD1-G93A, we quantified the expression of p16 and p21 and senescence-associated ß-galactosidase (SA-ß-gal) in nervous tissue. As SASP markers, we measured the mRNA levels of Il1a, Il6, Ifna and Ifnb. Furthermore, we explored whether an alteration of alternative splicing is associated with senescence by measuring the Adipor2 cryptic exon inclusion levels, a specific splicing variant repressed by TAR DNA-binding protein (TDP-43; encoded by Tardbp). Transgenic mice showed an atypical senescence profile with high p16 and p21 mRNA and protein in glia, without the canonical increase in SA-ß-gal activity. Consistent with SASP, there was an increase in Il1a and Il6 expression, associated with increased TNF-R and M-CSF protein levels, with females being partially protected. TDP-43 splicing activity was compromised in this model, and the senolytic drug Navitoclax did not alter the disease progression. This lack of effect was reproduced in vitro, in contrast to dasatinib and quercetin, which diminished p16 and p21. Our findings show a non-canonical profile of senescence biomarkers in the model hSOD1-G93A.


Assuntos
Interleucina-6 , Doença dos Neurônios Motores , Animais , Biomarcadores , Senescência Celular , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , RNA Mensageiro/genética , Superóxido Dismutase
4.
FEBS J ; 289(9): 2540-2561, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34796659

RESUMO

Cardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions. Expression data mining showed that cultured human CF (HCF) express more BCL2 than pulmonary and dermal fibroblasts. In addition, gene set enrichment analysis showed overrepresentation of genes involved in the response to hypoxia and oxidative stress, respiration and Janus kinase (JAK)/Signal transducer and Activator of Transcription (STAT) signaling pathways in HCF. BCL2 sustained survival and proliferation of cultured rat CF, which also had higher respiration capacity and reactive oxygen species (ROS) production than pulmonary and dermal fibroblasts. This was associated with higher expression of the electron transport chain (ETC) and antioxidant enzymes. CF had high phosphorylation of JAK2 and its effectors STAT3 and STAT5, and their inhibition reduced viability and respiration, impaired ROS control and reduced the expression of BCL2, ETC complexes and antioxidant enzymes. Together, our results identify molecular and biochemical mechanisms conferring survival advantage to experimental ischemia in CF and show their control by the JAK2/STAT signaling pathway. The presented data point to potential targets for the regulation of cardiac fibrosis and also open the possibility of a general mechanism by which somatic cells required to acutely respond to ischemia are constitutively adapted to survive it.


Assuntos
Antioxidantes , Janus Quinase 2 , Animais , Fibroblastos/metabolismo , Isquemia , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Respiração , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
5.
Obesity (Silver Spring) ; 27(7): 1133-1140, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31112015

RESUMO

OBJECTIVE: This study aimed to characterize the differences in protein oxidation biomarkers in adipose tissue (AT) as an indicator of AT metabolism and bariatric surgery weight-loss success. METHODS: A human model, in which sixty-five individuals with obesity underwent bariatric surgery, and a diet-induced obesity animal model, in which animals were treated for 2 months with normocaloric diets, were analyzed to determine the associations between AT protein oxidation and body weight loss. Protein oxidative biomarkers were determined by gas chromatography/mass spectrometry in AT from human volunteers before the surgery, as well as 2 months after a diet treatment in the animal model. RESULTS: The levels of carboxyethyl-lysine (CEL) and 2-succinocystein (2SC) in both visceral and subcutaneous AT before the surgery directly correlated with greater weight loss in both human and animal models. 2SC levels in subcutaneous AT greater than 4.7 × 106  µmol/mol lysine (95% CI: 3.4 × 106 to 6.0 × 106 ) may predict greater weight loss after bariatric surgery (receiver operating characteristic curve area = 0.8222; P = 0.0047). Additionally, it was observed that individuals with diabetes presented lower levels of CEL and 2SC in subcutaneous AT (P = 0.0266 and P = 0.0316, respectively) compared with individuals without diabetes. CONCLUSIONS: CEL and 2SC in AT are useful biomarkers of AT metabolism and predict the individual's ability to reduce body weight after bariatric surgery.


Assuntos
Tecido Adiposo/metabolismo , Cirurgia Bariátrica/métodos , Biomarcadores/metabolismo , Obesidade/terapia , Proteínas/metabolismo , Redução de Peso/fisiologia , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Glicosilação , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Oxirredução , Adulto Jovem
6.
Cell Physiol Biochem ; 51(1): 142-153, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30448824

RESUMO

BACKGROUND/AIMS: Thyroid hormones have been recently linked to senescence and longevity. Given the recent description of TSHB mRNA in human adipose tissue (AT), we aimed to investigate the relationship between local AT TSH and adipose tissue senescence. METHODS: TSHB mRNA (measured by real-time PCR) and markers of adipose tissue senescence [BAX, DBC1, TP53, TNF (real-time PCR), telomere length (Telo TAGGG Telomere Length Assay) and lipidomics (liquid chromatography mass spectrometry)] were analysed in subcutaneous (SAT) and visceral (VAT) AT from euthyroid subjects. The chronic effects of TSH were also investigated in AT from hypothyroid rats and after recombinant human TSH (rhTSH) administration in human adipocytes. RESULTS: Both VAT and SAT TSHB gene expression negatively correlated with markers of AT cellular senescence (BAX, DBC1, TP53, TNF gene expression and specific glucosylceramides) and positively associated with telomere length. Supporting these observations, both rhTSH administration in human adipocytes and increased TSH in hypothyroid rats resulted in decreased markers of cellular senescence (Bax and Tp53 mRNA) in both gonadal and subcutaneous white adipose tissue. CONCLUSION: These data point to a possible role of TSH in AT cellular senescence.


Assuntos
Senescência Celular , Hipotireoidismo/patologia , Gordura Intra-Abdominal/metabolismo , Gordura Subcutânea/metabolismo , Tireotropina Subunidade beta/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Glicemia/análise , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Hipotireoidismo/veterinária , Gordura Intra-Abdominal/citologia , Gordura Intra-Abdominal/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Gordura Subcutânea/citologia , Gordura Subcutânea/efeitos dos fármacos , Homeostase do Telômero , Tireotropina/genética , Tireotropina/metabolismo , Tireotropina/farmacologia , Tireotropina Subunidade beta/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
7.
EMBO Mol Med ; 10(8)2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29997171

RESUMO

The nuclear factor erythroid 2-like 2 (NRF2) is the master regulator of endogenous antioxidant responses. Oxidative damage is a shared and early-appearing feature in X-linked adrenoleukodystrophy (X-ALD) patients and the mouse model (Abcd1 null mouse). This rare neurometabolic disease is caused by the loss of function of the peroxisomal transporter ABCD1, leading to an accumulation of very long-chain fatty acids and the induction of reactive oxygen species of mitochondrial origin. Here, we identify an impaired NRF2 response caused by aberrant activity of GSK-3ß. We find that GSK-3ß inhibitors can significantly reactivate the blunted NRF2 response in patients' fibroblasts. In the mouse models (Abcd1- and Abcd1-/Abcd2-/- mice), oral administration of dimethyl fumarate (DMF/BG12/Tecfidera), an NRF2 activator in use for multiple sclerosis, normalized (i) mitochondrial depletion, (ii) bioenergetic failure, (iii) oxidative damage, and (iv) inflammation, highlighting an intricate cross-talk governing energetic and redox homeostasis in X-ALD Importantly, DMF halted axonal degeneration and locomotor disability suggesting that therapies activating NRF2 hold therapeutic potential for X-ALD and other axonopathies with impaired GSK-3ß/NRF2 axis.


Assuntos
Adrenoleucodistrofia/tratamento farmacológico , Antioxidantes/uso terapêutico , Fumarato de Dimetilo/uso terapêutico , Glicogênio Sintase Quinase 3 beta/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Fumarato de Dimetilo/administração & dosagem , Modelos Animais de Doenças , Gliose/tratamento farmacológico , Humanos , Masculino , Camundongos , Camundongos Knockout , Biogênese de Organelas , Estresse Oxidativo/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo
8.
Autophagy ; 14(8): 1398-1403, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29912613

RESUMO

TARDBP (TAR DNA binding protein) is one of the components of neuronal aggregates in sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. We have developed a simple quantitative method to evaluate TARDBP splicing function that was applied to spinal cord, brainstem, motor cortex, and occipital cortex in ALS (n = 8) cases compared to age- and gender-matched control (n = 17). Then, we quantified the abundance of a TARDBP-spliced cryptic exon present in ATG4B (autophagy related 4B cysteine peptidase) mRNA. Results of these analyses demonstrated that the loss of this TARDBP function in spinal cord, brainstem, motor cortex, and occipital cortex differentiated ALS from controls (area under the curve of receiver operating characteristic: 0.85). Significant correlations were also observed between cryptic exon levels, age, disease duration, and aberrant mRNA levels. To test if TARDBP function in splicing is relevant in ATG4B major function (autophagy) we downregulated TARDBP expression in human neural tissue and in HeLa cells, demonstrating that TARDBP is required for maintaining the expression of ATG4B. Further, ATG4B overexpression alone is sufficient to completely prevent the increase of SQSTM1 induced by TARDBP downregulation in human neural tissue cells and in cell lines. In conclusion, the present findings demonstrate abnormal alternative splicing of ATG4B transcripts in ALS neural tissue in agreement with TARDBP loss of function, leading to impaired autophagy. ABBREVIATIONS: ALS: amyotrophic lateral sclerosis; ATG4B: autophagy related 4B cysteine peptidase; AUC: area under the curve; FTLD: frontotemporal lobar degeneration; iPSC: induced pluripotent stem cells; ROC: receiver operating characteristic; TARDBP: TAR DNA binding protein; RT-qPCR: quantitative RT-PCR.


Assuntos
Processamento Alternativo/genética , Autofagia/genética , Proteínas de Ligação a DNA/metabolismo , Éxons/genética , Tecido Nervoso/metabolismo , Idoso , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Células HeLa , Homeostase , Humanos , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
9.
Oncotarget ; 9(4): 4522-4536, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435121

RESUMO

PURPOSE: In this work, a non-targeted approach was used to unravel changes in the plasma lipidome of PCOS patients. The aim is to offer new insights in PCOS patients strictly selected in order to avoid confounding factors such as dyslipemia, obesity, altered glucose/insulin metabolism, cardiovascular disease, or cancer. RESULTS: Multivariate statistics revealed a specific lipidomic signature for PCOS patients without associated pathologies. This signature implies changes, mainly by down-regulation, in glycerolipid, glycerophospholipid and sphingolipid metabolism suggesting an altered biosynthetic pathway of glycerophospholipids and cell signaling as second messengers in women with PCOS. CONCLUSIONS: Our study confirms that a lipidomic approach discriminates a specific phenotype from PCOS women without associated pathologies from healthy controls. METHODS: In a cross-sectional pilot study, data were obtained from 34 subjects, allocated to one of two groups: a) lean, healthy controls (n = 20), b) PCOS patients (n = 14) with diagnosis based on hyperandrogenaemia, oligo-anovulation and abnormal ovaries with small follicular cysts. A detailed biochemical characterization was made and lipidomic profiling was performed via an untargeted approach using LC-ESI-QTOF MS/MS.

10.
J Clin Endocrinol Metab ; 102(8): 2962-2973, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28591831

RESUMO

Context: Microbiota perturbations seem to exert modulatory effects on emotional behavior, stress-, and pain-modulation systems in adult animals; however, limited information is available in humans. Objective: To study potential relationships among the gut metagenome, brain microstructure, and cognitive performance in middle-aged, apparently healthy, obese and nonobese subjects after weight changes. Design: This is a longitudinal study over a 2-year period. Setting: A tertiary public hospital. Patients or Other Participants: Thirty-five (18 obese) apparently healthy subjects. Intervention(s): Diet counseling was provided to all subjects. Obese subjects were followed every 6 months. Main Outcome Measure(s): Brain relaxometry (using magnetic resonance R2*), cognitive performance (by means of cognitive tests), and gut microbiome composition (shotgun). Results: R2* increased in both obese and nonobese subjects, independent of weight variations. Changes in waist circumference, but not in body mass index, were associated with brain iron deposition (R2*) in the striatum, amygdala, and hippocampus in parallel to visual-spatial constructional ability and circulating beta amyloid Aß42 levels. These changes were linked to shifts in gut microbiome in which the relative abundance of bacteria belonging to Caldiserica and Thermodesulfobacteria phyla were reciprocally associated with raised R2* in different brain nuclei. Of note, the increase in bacteria belonging to Tenericutes phylum was parallel to decreased R2* gain in the striatum, serum Aß42 levels, and spared visual-spatial constructional ability. Interestingly, metagenome functions associated with circulating and brain iron stores are involved in bacterial generation of siderophores. Conclusions: Changes in the gut metagenome are associated longitudinally with cognitive function and brain iron deposition.


Assuntos
Encéfalo/metabolismo , Cognição , Microbioma Gastrointestinal/genética , Ferro/metabolismo , Metagenoma/genética , Obesidade/microbiologia , Circunferência da Cintura , Adulto , Bacteroidetes , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Estudos Transversais , Feminino , Firmicutes , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Obesidade/metabolismo , Obesidade/psicologia , Tenericutes
11.
FASEB J ; 31(10): 4482-4491, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28646016

RESUMO

Subclinical hypothyroidism is known to be associated with increased serum cholesterol. Since thyroid-stimulating hormone (TSH) exerts an inductor effect on cholesterol biosynthesis, we aimed to investigate the relationship between TSH mRNA and cholesterol metabolism in human adipose tissue (AT). Cross-sectionally, AT TSH-ß (TSHB) mRNA was evaluated in 4 independent cohorts in association with serum total and LDL cholesterol, and AT lipidomics. Longitudinally, the effects of statins and of diet and exercise on AT TSHB mRNA were also examined. The bidirectional relationship between cholesterol and TSHB were studied in isolated human adipocytes. TSHB mRNA was consistently detected in AT from euthyroid subjects, and positively associated with serum total- and LDL-cholesterol, and with AT-specific cholesterol metabolism-associated lipids [arachidonoyl cholesteryl ester, C8-dihydroceramide, N-stearoyl-d-sphingosine, and GlcCer(18:0, 24:1)]. Reduction of cholesterol with statins and with diet and exercise interventions led to decreased TSHB mRNA in human AT, whereas excess cholesterol up-regulated TSHB mRNA in human adipocytes. In addition, recombinant human TSH α/ß administration resulted in increased HMGCR mRNA levels in human adipocytes. In mice, subcutaneous AT Tshb expression levels correlated directly with circulating cholesterol levels. In summary, current results provide novel evidence of TSHB as a paracrine factor that is modulated in parallel with cholesterol metabolism in human AT.-Moreno-Navarrete, J. M., Moreno, M., Ortega, F., Xifra, G., Hong, S., Asara, J. M., Serrano, J. C. E., Jové, M., Pissios, P., Blüher, M., Ricart, W., Portero-Otin, M., Fernández-Real, J. M. TSHB mRNA is linked to cholesterol metabolism in adipose tissue.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Tireotropina Subunidade beta/genética , Tireotropina/metabolismo , Animais , Colesterol/metabolismo , Humanos , Hipotireoidismo/metabolismo , Camundongos
12.
Oncotarget ; 8(65): 109018-109026, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29312587

RESUMO

PURPOSE: We aimed to study the potential influence of tumour blood flow -obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)- in the metabolomic profiles of endometrial tumours. METHODS: Liquid chromatography coupled to mass spectrometry established the metabolomic profile of endometrial cancer lesions exhibiting high (n=12) or low (n=14) tumour blood flow at DCE-MRI. Univariate and multivariate statistics (ortho-PLS-DA, a random forest (RF) classifier and hierarchical clustering) and receiver operating characteristic (ROC) curves were used to establish a panel for potentially discriminating tumours with high versus low blood flow. RESULTS: Tumour blood flow is associated with specific metabolomic signatures. Ortho-PLS-DA and RF classifier resulted in well-defined clusters with an out-of-bag error lower than 8%. We found 28 statistically significant molecules (False Discovery Rate corrected p<0.05). Based on exact mass, retention time and isotopic distribution we identified 9 molecules including resolvin D and specific lysophospholipids associated with blood flow, and hence with a potentially regulatory role relevant in endometrial cancer. CONCLUSIONS: Tumour flow parameters at DCE-MRI quantifying vascular tumour characteristics are reflected in corresponding metabolomics signatures and highlight disease mechanisms that may be targetable by novel therapies.

13.
Free Radic Biol Med ; 103: 14-22, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27979658

RESUMO

Human brain aging is the physiological process which underlies as cause of cognitive decline in the elderly and the main risk factor for neurodegenerative diseases such as Alzheimer's disease. Human neurons are functional throughout a healthy adult lifespan, yet the mechanisms that maintain function and protect against neurodegenerative processes during aging are unknown. Here we show that protein oxidative and glycoxidative damage significantly increases during human brain aging, with a breakpoint at 60 years old. This trajectory is coincident with a decrease in the content of the mitochondrial respiratory chain complex I-IV. We suggest that the deterioration in oxidative stress homeostasis during aging induces an adaptive response of stress resistance mechanisms based on the sustained expression of REST, and increased or decreased expression of Akt and mTOR, respectively, over the adult lifespan in order to preserve cell neural survival and function.


Assuntos
Envelhecimento , Lobo Frontal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Lobo Frontal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Oxirredução , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma
14.
Oncotarget ; 7(32): 52364-52374, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27429042

RESUMO

Metabolomics, an essential technique in precision medicine, contributes to the molecular fingerprinting of tumours, further helping to understand their pathogenesis. In this work, using a LC-ESI-QTOF-MS/MS platform, we demonstrated the existence of a specific metabolomic signature which could define endometrioid endometrial carcinoma (EEC), arising the endocannabinoid system as a potential pathway involved in EC pathogenesis. Metabolomics could also shed light in the processes involved in myometrial invasion, proposing new targets for possible therapeutic intervention. Consequently, we also described a different metabolomic profile in surface endometrioid carcinoma and myometrial invasive front. We validated pathways disclosed by metabolomics by immunohistochemistry. Specifically, endocannabinoid and purine metabolism could be involved in tumor myometrial invasion.


Assuntos
Carcinoma Endometrioide/metabolismo , Endocanabinoides/metabolismo , Neoplasias do Endométrio/metabolismo , Metabolômica/métodos , Biomarcadores Tumorais/metabolismo , Feminino , Humanos
15.
Biochim Biophys Acta ; 1862(4): 526-535, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26820774

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease. Here we show that a mouse model of haploinsufficiency in the lipid and protein phosphatase and tensin homolog protein (PTEN(+/-)) exhibits hepatomegaly, increased liver lipogenic gene expression (SREBP-1C and PPARγ) and hepatic lesions analogous to human NAFLD. The livers of PTEN(+/-) mice also contained lower levels of retinoic acid (RA) than normal, similarly to human NAFLD patients. The RA signaling pathway thus offers a novel therapeutic target for the treatment of NAFLD although the impact of nutrition in this context is unclear. We therefore fed PTEN(+/-) mice for 36weeks a diet containing genetically engineered high-carotenoid corn (HCAR) to investigate its potential beneficial effects on the hepatic symptoms of NAFLD. The HCAR diet reduced hepatomegaly and promoted the repartitioning of fatty acids in the liver, away from triacylglycerol storage. At the molecular level, the HCAR diet clearly reduced lipogenic gene expression, boosted catabolism, and increased hepatic RA levels. These results set the stage for human trials to evaluate the use of high-carotenoid foods for the reduction or prevention of steatosis in NAFLD.


Assuntos
Carotenoides/farmacologia , Alimentos Geneticamente Modificados , Haploinsuficiência , Hepatomegalia/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , PTEN Fosfo-Hidrolase/genética , Zea mays , Ração Animal , Animais , Feminino , Hepatomegalia/genética , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Camundongos , Camundongos Mutantes , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , PPAR gama/genética , PPAR gama/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
16.
Neurobiol Dis ; 88: 148-60, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26805387

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA), a key lipid in nervous system homeostasis, is depleted in the spinal cord of sporadic amyotrophic lateral sclerosis (sALS) patients. However, the basis for such loss was unknown. METHODS: DHA synthetic machinery was evaluated in spinal cord samples from ALS patients and controls by immunohistochemistry and western blot. Further, lipid composition was measured in organotypic spinal cord cultures by gas chromatography and liquid chromatography coupled to mass spectrometry. In these samples, mitochondrial respiratory functions were measured by high resolution respirometry. Finally, Neuro2-A and stem cell-derived human neurons were used for evaluating mechanistic relationships between TDP-43 aggregation, oxidative stress and cellular changes in DHA-related proteins. RESULTS: ALS is associated to changes in the spinal cord distribution of DHA synthesis enzymatic machinery comparing ten ALS cases and eight controls. We found increased levels of desaturases (ca 95% increase, p<0.001), but decreased amounts of DHA-related ß-oxidation enzymes in ALS samples (40% decrease, p<0.05). Further, drebrin, a DHA-dependent synaptic protein, is depleted in spinal cord samples from ALS patients (around 40% loss, p<0.05). In contrast, chronic excitotoxicity in spinal cord increases DHA acid amount, with both enhanced concentrations of neuroprotective docosahexaenoic acid-derived resolvin D, and higher lipid peroxidation-derived molecules such as 8-iso-prostaglandin-F2-α (8-iso-PGF2α) levels. Since α-tocopherol improved mitochondrial respiratory function and motor neuron survival in these conditions, it is suggested that oxidative stress could boost motor neuron loss. Cell culture and metabolic flux experiments, showing enhanced expression of desaturases (FADS2) and ß-oxidation enzymes after H2O2 challenge suggest that DHA production can be an initial response to oxidative stress, driven by TDP-43 aggregation and drebrin loss. Interestingly, these changes were dependent on cell type used, since human neurons exhibited losses of FADS2 and drebrin after oxidative stress. These features (drebrin loss and FADS2 alterations) were also produced by transfection by aggregation prone C-terminal fragments of TDP-43. CONCLUSIONS: sALS is associated with tissue-specific DHA-dependent synthetic machinery alteration. Furthermore, excitotoxicity sinergizes with oxidative stress to increase DHA levels, which could act as a response over stress, involving the expression of DHA synthetic enzymes. Later on, this allostatic overload could exacerbate cell stress by contributing to TDP-43 aggregation. This, at its turn, could blunt this protective response, overall leading to DHA depletion and neuronal dysfunction.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Medula Espinal/metabolismo , Esclerose Lateral Amiotrófica/enzimologia , Animais , Animais Recém-Nascidos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Graxos/metabolismo , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Neuroblastoma/patologia , Oxidantes/farmacologia , Ratos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia
17.
Acta Neuropathol Commun ; 4: 3, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26757991

RESUMO

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a gender bias towards major prevalence in male individuals. Several data suggest the involvement of oxidative stress and mitochondrial dysfunction in its pathogenesis, though differences between genders have not been evaluated. For this reason, we analysed features of mitochondrial oxidative metabolism, as well as mitochondrial chain complex enzyme activities and protein expression, lipid profile, and protein oxidative stress markers, in the Cu,Zn superoxide dismutase with the G93A mutation (hSOD1-G93A)- transgenic mice and Neuro2A(N2A) cells overexpressing hSOD1-G93A. RESULTS AND CONCLUSIONS: Our results show that overexpression of hSOD1-G93A in transgenic mice decreased efficiency of mitochondrial oxidative phosphorylation, located at complex I, revealing a temporal delay in females with respect to males associated with a parallel increase in selected markers of protein oxidative damage. Further, females exhibit a fatty acid profile with higher levels of docosahexaenoic acid at 30 days. Mechanistic studies showed that hSOD1-G93A overexpression in N2A cells reduced complex I function, a defect prevented by 17ß-estradiol pretreatment. In conclusion, ALS-associated SOD1 mutation leads to delayed mitochondrial dysfunction in female mice in comparison with males, in part attributable to the higher oestrogen levels of the former. This study is important in the effort to further understanding of whether different degrees of spinal cord mitochondrial dysfunction could be disease modifiers in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Mitocôndrias/metabolismo , Neurônios Motores/ultraestrutura , Estresse Oxidativo/fisiologia , Medula Espinal/patologia , Fatores Etários , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/mortalidade , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Neuroblastoma/patologia , Consumo de Oxigênio/genética , Fatores Sexuais , Medula Espinal/ultraestrutura , Superóxido Dismutase
18.
Diseases ; 4(1)2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28933394

RESUMO

Metabolic flexibility is the capacity of an organism to adequately respond to changes in the environment, such as nutritional input, energetic demand, etc. An important player in the capacity of adaptation through different stages of metabolic demands is the mitochondrion. In this context, mitochondrial dysfunction has been attributed to be the onset and center of many chronic diseases, which are denoted by an inability to adapt fuel preferences and induce mitochondrial morphological changes to respond to metabolic demands, such as mitochondrial number, structure and function. Several nutritional interventions have shown the capacity to induce changes in mitochondrial biogenesis/degradation, oxidative phosphorylation efficiency, mitochondrial membrane composition, electron transfer chain capacity, etc., in metabolic inflexibility states that may open new target options and mechanisms of action of bioactive compounds for the treatment of metabolic diseases. This review is focused in three well-recognized food bioactive compounds that modulate insulin sensitivity, polyphenols, ω-3 fatty acids and dietary fiber, by several mechanism of action, like caloric restriction properties and inflammatory environment modulation, both closely related to mitochondrial function and dynamics.

19.
Hum Mol Genet ; 24(24): 6861-76, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26370417

RESUMO

X-linked adrenomyeloneuropathy (AMN) is an inherited neurometabolic disorder caused by malfunction of the ABCD1 gene, characterized by slowly progressing spastic paraplegia affecting corticospinal tracts, and adrenal insufficiency. AMN is the most common phenotypic manifestation of adrenoleukodystrophy (X-ALD). In some cases, an inflammatory cerebral demyelination occurs associated to poor prognosis in cerebral AMN (cAMN). Though ABCD1 codes for a peroxisomal transporter of very long-chain fatty acids, the molecular mechanisms that govern disease onset and progression, or its transformation to a cerebral, inflammatory demyelinating form, remain largely unknown. Here we used an integrated -omics approach to identify novel biomarkers and altered network dynamic characteristic of, and possibly driving, the disease. We combined an untargeted metabolome assay of plasma and peripheral blood mononuclear cells (PBMC) of AMN patients, which used liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (LC-Q-TOF), with a functional genomics analysis of spinal cords of Abcd1(-) mouse. The results uncovered altered nodes in lipid-driven proinflammatory cascades, such as glycosphingolipid and glycerophospholipid synthesis, governed by the ß-1,4-galactosyltransferase (B4GALT6), the phospholipase 2γ (PLA2G4C) and the choline/ethanolamine phosphotransferase (CEPT1) enzymes. Confirmatory investigations revealed a non-classic, inflammatory profile, consisting on the one hand of raised plasma levels of several eicosanoids derived from arachidonic acid through PLA2G4C activity, together with also the proinflammatory cytokines IL6, IL8, MCP-1 and tumor necrosis factor-α. In contrast, we detected a more protective, Th2-shifted response in PBMC. Thus, our findings illustrate a previously unreported connection between ABCD1 dysfunction, glyco- and glycerolipid-driven inflammatory signaling and a fine-tuned inflammatory response underlying a disease considered non-inflammatory.


Assuntos
Adrenoleucodistrofia/sangue , Glicerofosfolipídeos/sangue , Glicolipídeos/sangue , Mediadores da Inflamação/metabolismo , Transdução de Sinais , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/genética , Adulto , Animais , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
20.
Neurobiol Aging ; 36(1): 68-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25311278

RESUMO

The neuroprotective role of adenosine and the deregulation of adenosine receptors in Alzheimer's disease (AD) have been extensively studied in recent years. However, little is known about the involvement of purine metabolism in AD. We started by analyzing gene expression in the entorhinal cortex of human controls and AD cases with whole-transcript expression arrays. Once we identified deregulation of the cluster purine metabolism, messenger RNA expression levels of 23 purine metabolism genes were analyzed with qRT-PCR in the entorhinal cortex, frontal cortex area 8, and precuneus at stages I-II, III-IV, and V-VI of Braak and Braak and controls. APRT, DGUOK, POLR3B, ENTPD3, AK5, NME1, NME3, NME5, NME7, and ENTPD2 messenger RNAs were deregulated, with regional variations, in AD cases when compared with controls. In addition, liquid chromatography mass spectrometry based metabolomics in the entorhinal cortex identified altered levels of dGMP, glycine, xanthosine, inosine diphosphate, guanine, and deoxyguanosine, all implicated in this pathway. Our results indicate stage- and region-dependent deregulation of purine metabolism in AD.


Assuntos
Doença de Alzheimer/metabolismo , Córtex Entorrinal/metabolismo , Regulação da Expressão Gênica/genética , Expressão Gênica/genética , Purinas/metabolismo , RNA Mensageiro/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida , Nucleotídeos de Desoxiguanina/metabolismo , Feminino , Glicina/metabolismo , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleosídeos/metabolismo , Xantinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA