Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
bioRxiv ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38766216

RESUMO

Alpha-thalassemia is an autosomal recessive disease with increasing worldwide prevalence. The molecular basis is due to mutation or deletion of one or more duplicated α-globin genes, and disease severity is directly related to the number of allelic copies compromised. The most severe form, α-thalassemia major (αTM), results from loss of all four copies of α-globin and has historically resulted in fatality in utero . However, in utero transfusions now enable survival to birth. Postnatally, patients face challenges similar to ß-thalassemia, including severe anemia and erythrotoxicity due to imbalance of ß-globin and α-globin chains. While curative, hematopoietic stem cell transplantation (HSCT) is limited by donor availability and potential transplant-related complications. Despite progress in genome editing treatments for ß-thalassemia, there is no analogous curative option for patients suffering from α-thalassemia. To address this, we designed a novel Cas9/AAV6-mediated genome editing strategy that integrates a functional α-globin gene into the ß-globin locus in αTM patient-derived hematopoietic stem and progenitor cells (HSPCs). Incorporation of a truncated erythropoietin receptor transgene into the α-globin integration cassette dramatically increased erythropoietic output from edited HSPCs and led to the most robust production of α-globin, and consequently normal hemoglobin. By directing edited HSPCs toward increased production of clinically relevant RBCs instead of other divergent cell types, this approach has the potential to mitigate the limitations of traditional HSCT for the hemoglobinopathies, including low genome editing and low engraftment rates. These findings support development of a definitive ex vivo autologous genome editing strategy that may be curative for α-thalassemia.

2.
Dev Cell ; 59(9): 1110-1131.e22, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569552

RESUMO

The developmental origin of blood-forming hematopoietic stem cells (HSCs) is a longstanding question. Here, our non-invasive genetic lineage tracing in mouse embryos pinpoints that artery endothelial cells generate HSCs. Arteries are transiently competent to generate HSCs for 2.5 days (∼E8.5-E11) but subsequently cease, delimiting a narrow time frame for HSC formation in vivo. Guided by the arterial origins of blood, we efficiently and rapidly differentiate human pluripotent stem cells (hPSCs) into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and >90% pure hematopoietic progenitors within 10 days. hPSC-derived hematopoietic progenitors generate T, B, NK, erythroid, and myeloid cells in vitro and, critically, express hallmark HSC transcription factors HLF and HOXA5-HOXA10, which were previously challenging to upregulate. We differentiated hPSCs into highly enriched HLF+ HOXA+ hematopoietic progenitors with near-stoichiometric efficiency by blocking formation of unwanted lineages at each differentiation step. hPSC-derived HLF+ HOXA+ hematopoietic progenitors could avail both basic research and cellular therapies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Hematopoéticas , Proteínas de Homeodomínio , Células-Tronco Pluripotentes , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Animais , Camundongos , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Hematopoese
3.
Cell Stem Cell ; 31(4): 499-518.e6, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579682

RESUMO

Allogeneic hematopoietic stem and progenitor cell transplant (HSCT) of CCR5 null (CCR5Δ32) cells can be curative for HIV-1-infected patients. However, because allogeneic HSCT poses significant risk, CCR5Δ32 matched bone marrow donors are rare, and CCR5Δ32 transplant does not confer resistance to the CXCR4-tropic virus, it is not a viable option for most patients. We describe a targeted Cas9/AAV6-based genome editing strategy for autologous HSCT resulting in both CCR5- and CXCR4-tropic HIV-1 resistance. Edited human hematopoietic stem and progenitor cells (HSPCs) maintain multi-lineage repopulation capacity in vivo, and edited primary human T cells potently inhibit infection by both CCR5-tropic and CXCR4-tropic HIV-1. Modification rates facilitated complete loss of CCR5-tropic replication and up to a 2,000-fold decrease in CXCR4-tropic replication without CXCR4 locus disruption. This multi-factor editing strategy in HSPCs could provide a broad approach for autologous HSCT as a functional cure for both CCR5-tropic and CXCR4-tropic HIV-1 infections.


Assuntos
Edição de Genes , Infecções por HIV , HIV-1 , Humanos , Edição de Genes/métodos , Células-Tronco Hematopoéticas , Infecções por HIV/genética , Infecções por HIV/terapia , HIV-1/genética , Receptores CCR5/genética , Receptores CXCR4/genética
4.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38496600

RESUMO

Autologous transplantation of CCR5 null hematopoietic stem and progenitor cells (HSPCs) is the only known cure for HIV-1 infection. However, this treatment is limited because of the rarity of CCR5 -null matched donors, the morbidities associated with allogeneic transplantation, and the prevalence of HIV-1 strains resistant to CCR5 knockout (KO) alone. Here, we propose a one-time therapy through autologous transplantation of HSPCs genetically engineered ex vivo to produce both CCR5 KO cells and long-term secretion of potent HIV-1 inhibiting antibodies from B cell progeny. CRISPR-Cas9-engineered HSPCs maintain engraftment capacity and multi-lineage potential in vivo and can be engineered to express multiple antibodies simultaneously. Human B cells engineered to express each antibody secrete neutralizing concentrations capable of inhibiting HIV-1 pseudovirus infection in vitro . This work lays the groundwork for a potential one-time functional cure for HIV-1 through combining the long-term delivery of therapeutic antibodies against HIV-1 and the known efficacy of CCR5 KO HSPC transplantation.

5.
Mol Ther Nucleic Acids ; 35(1): 102134, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38384445

RESUMO

A "universal strategy" replacing the full-length CFTR cDNA may treat >99% of people with cystic fibrosis (pwCF), regardless of their specific mutations. Cas9-based gene editing was used to insert the CFTR cDNA and a truncated CD19 (tCD19) enrichment tag at the CFTR locus in airway basal stem cells. This strategy restores CFTR function to non-CF levels. Here, we investigate the safety of this approach by assessing genomic and regulatory changes after CFTR cDNA insertion. Safety was first assessed by quantifying genetic rearrangements using CAST-seq. After validating restored CFTR function in edited and enriched airway cells, the CFTR locus open chromatin profile was characterized using ATAC-seq. The regenerative potential and differential gene expression in edited cells was assessed using scRNA-seq. CAST-seq revealed a translocation in ∼0.01% of alleles primarily occurring at a nononcogenic off-target site and large indels in 1% of alleles. The open chromatin profile of differentiated airway epithelial cells showed no appreciable changes, except in the region corresponding to the CFTR cDNA and tCD19 cassette, indicating no detectable changes in gene regulation. Edited stem cells produced the same types of airway cells as controls with minimal alternations in gene expression. Overall, the universal strategy showed minor undesirable genomic changes.

6.
Immunol Rev ; 322(1): 157-177, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233996

RESUMO

Inborn errors of immunity (IEI) present a unique paradigm in the realm of gene therapy, emphasizing the need for precision in therapeutic design. As gene therapy transitions from broad-spectrum gene addition to careful modification of specific genes, the enduring safety and effectiveness of these therapies in clinical settings have become crucial. This review discusses the significance of IEIs as foundational models for pioneering and refining precision medicine. We explore the capabilities of gene addition and gene correction platforms in modifying the DNA sequence of primary cells tailored for IEIs. The review uses four specific IEIs to highlight key issues in gene therapy strategies: X-linked agammaglobulinemia (XLA), X-linked chronic granulomatous disease (X-CGD), X-linked hyper IgM syndrome (XHIGM), and immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX). We detail the regulatory intricacies and therapeutic innovations for each disorder, incorporating insights from relevant clinical trials. For most IEIs, regulated expression is a vital aspect of the underlying biology, and we discuss the importance of endogenous regulation in developing gene therapy strategies.


Assuntos
Agamaglobulinemia , Doenças Genéticas Ligadas ao Cromossomo X , Enteropatias , Humanos , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/terapia , Enteropatias/genética , Enteropatias/terapia , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Terapia Genética
7.
Nat Commun ; 15(1): 111, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169468

RESUMO

Genome editing by homology directed repair (HDR) is leveraged to precisely modify the genome of therapeutically relevant hematopoietic stem and progenitor cells (HSPCs). Here, we present a new approach to increasing the frequency of HDR in human HSPCs by the delivery of an inhibitor of 53BP1 (named "i53") as a recombinant peptide. We show that the use of i53 peptide effectively increases the frequency of HDR-mediated genome editing at a variety of therapeutically relevant loci in HSPCs as well as other primary human cell types. We show that incorporating the use of i53 recombinant protein allows high frequencies of HDR while lowering the amounts of AAV6 needed by 8-fold. HDR edited HSPCs were capable of long-term and bi-lineage hematopoietic reconstitution in NSG mice, suggesting that i53 recombinant protein might be safely integrated into the standard CRISPR/AAV6-mediated genome editing protocol to gain greater numbers of edited cells for transplantation of clinically meaningful cell populations.


Assuntos
Edição de Genes , Transplante de Células-Tronco Hematopoéticas , Humanos , Animais , Camundongos , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas Recombinantes/metabolismo , Peptídeos/metabolismo , Sistemas CRISPR-Cas
8.
Mol Biol Cell ; 35(2): ar15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38019608

RESUMO

Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small-molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase and demonstrated that CFTR-F508del ERAD is robust. Gene-drug interaction experiments illustrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Humanos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Degradação Associada com o Retículo Endoplasmático , Fibrose Cística/tratamento farmacológico , Mutação , Ligases/genética , Ligases/metabolismo , Benzodioxóis/farmacologia , Benzodioxóis/uso terapêutico , Dobramento de Proteína , Proteínas Mitocondriais/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
9.
Blood Adv ; 8(7): 1820-1833, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38096800

RESUMO

ABSTRACT: Recombination-activating genes (RAG1 and RAG2) are critical for lymphoid cell development and function by initiating the variable (V), diversity (D), and joining (J) (V(D)J)-recombination process to generate polyclonal lymphocytes with broad antigen specificity. The clinical manifestations of defective RAG1/2 genes range from immune dysregulation to severe combined immunodeficiencies (SCIDs), causing life-threatening infections and death early in life without hematopoietic cell transplantation (HCT). Despite improvements, haploidentical HCT without myeloablative conditioning carries a high risk of graft failure and incomplete immune reconstitution. The RAG complex is only expressed during the G0-G1 phase of the cell cycle in the early stages of T- and B-cell development, underscoring that a direct gene correction might capture the precise temporal expression of the endogenous gene. Here, we report a feasibility study using the CRISPR/Cas9-based "universal gene-correction" approach for the RAG2 locus in human hematopoietic stem/progenitor cells (HSPCs) from healthy donors and RAG2-SCID patient. V(D)J-recombinase activity was restored after gene correction of RAG2-SCID-derived HSPCs, resulting in the development of T-cell receptor (TCR) αß and γδ CD3+ cells and single-positive CD4+ and CD8+ lymphocytes. TCR repertoire analysis indicated a normal distribution of CDR3 length and preserved usage of the distal TRAV genes. We confirmed the in vivo rescue of B-cell development with normal immunoglobulin M surface expression and a significant decrease in CD56bright natural killer cells. Together, we provide specificity, toxicity, and efficacy data supporting the development of a gene-correction therapy to benefit RAG2-deficient patients.


Assuntos
Proteínas de Homeodomínio , Imunodeficiência Combinada Severa , Humanos , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , VDJ Recombinases
10.
bioRxiv ; 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37745470

RESUMO

Over 80% of people with cystic fibrosis (CF) carry the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel at the apical plasma membrane (PM) of epithelial cells. F508del impairs CFTR folding causing it to be destroyed by endoplasmic reticulum associated degradation (ERAD). Small molecule correctors, which act as pharmacological chaperones to divert CFTR-F508del from ERAD, are the primary strategy for treating CF, yet corrector development continues with only a rudimentary understanding of how ERAD targets CFTR-F508del. We conducted genome-wide CRISPR/Cas9 knockout screens to systematically identify the molecular machinery that underlies CFTR-F508del ERAD. Although the ER-resident ubiquitin ligase, RNF5 was the top E3 hit, knocking out RNF5 only modestly reduced CFTR-F508del degradation. Sublibrary screens in an RNF5 knockout background identified RNF185 as a redundant ligase, demonstrating that CFTR-F508del ERAD is highly buffered. Gene-drug interaction experiments demonstrated that correctors tezacaftor (VX-661) and elexacaftor (VX-445) stabilize sequential, RNF5-resistant folding states. We propose that binding of correctors to nascent CFTR-F508del alters its folding landscape by stabilizing folding states that are not substrates for RNF5-mediated ubiquitylation.

11.
Mol Ther Methods Clin Dev ; 30: 317-331, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37637384

RESUMO

Ex vivo gene correction with CRISPR-Cas9 and a recombinant adeno-associated virus serotype 6 (rAAV6) in autologous hematopoietic stem/progenitor cells (HSPCs) to treat sickle cell disease (SCD) has now entered early-phase clinical investigation. To facilitate the progress of CRISPR-Cas9/rAAV6 genome editing technology, we analyzed the molecular changes in key reagents and cellular responses during and after the genome editing procedure in human HSPCs. We demonstrated the high stability of rAAV6 to serve as the donor DNA template. We assessed the benefit of longer HSPC pre-stimulation in terms of increased numbers of edited cells. We observed that the p53 pathway was transiently activated, peaking at 6 h, and resolved over time. Notably, we revealed a strong correlation between p21 mRNA level and rAAV6 genome number in cells and beneficial effects of transient inhibition of p53 with siRNA on genome editing, cell proliferation, and cell survival. In terms of potential immunogenicity, we found that rAAV6 capsid protein was not detectable, while a trace amount of residual Cas9 protein was still detected at 48 h post-genome editing. We believe this information will provide important insights for future improvements of gene correction protocols in HSPCs.

12.
Mol Ther ; 31(4): 1074-1087, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36793210

RESUMO

While a number of methods exist to investigate CRISPR off-target (OT) editing, few have been compared head-to-head in primary cells after clinically relevant editing processes. Therefore, we compared in silico tools (COSMID, CCTop, and Cas-OFFinder) and empirical methods (CHANGE-Seq, CIRCLE-Seq, DISCOVER-Seq, GUIDE-Seq, and SITE-Seq) after ex vivo hematopoietic stem and progenitor cell (HSPC) editing. We performed editing using 11 different gRNAs complexed with Cas9 protein (high-fidelity [HiFi] or wild-type versions), then performed targeted next-generation sequencing of nominated OT sites identified by in silico and empirical methods. We identified an average of less than one OT site per guide RNA (gRNA) and all OT sites generated using HiFi Cas9 and a 20-nt gRNA were identified by all OT detection methods with the exception of SITE-seq. This resulted in high sensitivity for the majority of OT nomination tools and COSMID, DISCOVER-Seq, and GUIDE-Seq attained the highest positive predictive value (PPV). We found that empirical methods did not identify OT sites that were not also identified by bioinformatic methods. This study supports that refined bioinformatic algorithms could be developed that maintain both high sensitivity and PPV, thereby enabling more efficient identification of potential OT sites without compromising a thorough examination for any given gRNA.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Antígenos CD34 , Proteína 9 Associada à CRISPR/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , RNA Guia de Sistemas CRISPR-Cas
13.
Nat Commun ; 13(1): 4724, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35953477

RESUMO

As CRISPR-based therapies enter the clinic, evaluation of safety remains a critical and active area of study. Here, we employ a clinical next generation sequencing (NGS) workflow to achieve high sequencing depth and detect ultra-low frequency variants across exons of genes associated with cancer, all exons, and genome wide. In three separate primary human hematopoietic stem and progenitor cell (HSPC) donors assessed in technical triplicates, we electroporated high-fidelity Cas9 protein targeted to three loci (AAVS1, HBB, and ZFPM2) and harvested genomic DNA at days 4 and 10. Our results demonstrate that clinically relevant delivery of high-fidelity Cas9 to primary HSPCs and ex vivo culture up to 10 days does not introduce or enrich for tumorigenic variants and that even a single SNP in a gRNA spacer sequence is sufficient to eliminate Cas9 off-target activity in primary, repair-competent human HSPCs.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Células-Tronco Hematopoéticas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Guia de Cinetoplastídeos/genética
14.
Cancer Res ; 82(15): 2777-2791, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35763671

RESUMO

Small molecule tyrosine kinase inhibitors (TKI) have revolutionized cancer treatment and greatly improved patient survival. However, life-threatening cardiotoxicity of many TKIs has become a major concern. Ponatinib (ICLUSIG) was developed as an inhibitor of the BCR-ABL oncogene and is among the most cardiotoxic of TKIs. Consequently, use of ponatinib is restricted to the treatment of tumors carrying T315I-mutated BCR-ABL, which occurs in chronic myeloid leukemia (CML) and confers resistance to first- and second-generation inhibitors such as imatinib and nilotinib. Through parallel screening of cardiovascular toxicity and antitumor efficacy assays, we engineered safer analogs of ponatinib that retained potency against T315I BCR-ABL kinase activity and suppressed T315I mutant CML tumor growth. The new compounds were substantially less toxic in human cardiac vasculogenesis and cardiomyocyte contractility assays in vitro. The compounds showed a larger therapeutic window in vivo, leading to regression of human T315I mutant CML xenografts without cardiotoxicity. Comparison of the kinase inhibition profiles of ponatinib and the new compounds suggested that ponatinib cardiotoxicity is mediated by a few kinases, some of which were previously unassociated with cardiovascular disease. Overall, the study develops an approach using complex phenotypic assays to reduce the high risk of cardiovascular toxicity that is prevalent among small molecule oncology therapeutics. SIGNIFICANCE: Newly developed ponatinib analogs retain antitumor efficacy but elicit significantly decreased cardiotoxicity, representing a therapeutic opportunity for safer CML treatment.


Assuntos
Antineoplásicos , Leucemia Mielogênica Crônica BCR-ABL Positiva , Piridazinas , Antineoplásicos/efeitos adversos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Humanos , Imidazóis , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/efeitos adversos , Piridazinas/farmacologia , Piridazinas/uso terapêutico
15.
Hematol Oncol Clin North Am ; 36(4): 647-665, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35773054

RESUMO

Innovations in programmable nucleases have expanded genetic engineering capabilities, raising the possibility of a new approach to curing monogenic hematological diseases. Feasibility studies using ex vivo targeted genome-editing, and nonintegrating viral vectors show outstanding potential for correcting genetic conditions at their root cause. This article reviews the latest technological advances in the CRISPR/Cas9 system alone and combined with engineered viruses as editing tools for human hematopoietic stem and progenitor cells (HSPCs). We discuss the early phase in human trials of genome editing-based therapies for hemoglobinopathies.


Assuntos
Edição de Genes , Vetores Genéticos , Sistemas CRISPR-Cas , DNA , Células-Tronco Hematopoéticas , Humanos , Sistema Imunitário
16.
Mol Ther ; 30(1): 223-237, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33794364

RESUMO

Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Sistemas CRISPR-Cas , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Mutação , Células-Tronco/metabolismo
17.
Front Immunol ; 13: 1067417, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685559

RESUMO

Introduction: Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs. Methods: We compare the two approaches for integration of IL2RG transgene for functional correction of HSPCs from patients with X-linked Severe Combined Immunodeficiency (SCID-X1 or XSCID); delivery via current clinical lentivector (LV)-IL2RG versus targeted insertion (TI) of IL2RG via homology-directed repair (HDR) when using an adeno-associated virus (AAV)-IL2RG donor following double-strand DNA break at the endogenous IL2RG locus. Results and discussion: In vitro differentiation of LV- or TI-treated XSCID HSPCs similarly overcome differentiation block into Pre-T-I and Pre-T-II lymphocytes but we observed significantly superior development of NK cells when corrected by TI (40.7% versus 4.1%, p = 0.0099). Transplants into immunodeficient mice demonstrated robust engraftment (8.1% and 23.3% in bone marrow) for LV- and TI-IL2RG HSPCs with efficient T cell development following TI-IL2RG in all four patients' HSPCs. Extensive specificity analysis of CRISPR-Cas9 editing with rhAmpSeq covering 82 predicted off-target sites found no evidence of indels in edited cells before (in vitro) or following transplant, in stark contrast to LV's non-targeted vector integration sites. Together, the improved efficiency and safety of IL2RG correction via CRISPR-Cas9-based TI approach provides a strong rationale for a clinical trial for treatment of XSCID patients.


Assuntos
Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Animais , Camundongos , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Dependovirus , Sistemas CRISPR-Cas , Camundongos SCID , Células-Tronco Hematopoéticas
18.
Sci Transl Med ; 13(598)2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135108

RESUMO

Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the ß-globin gene (HBB). Ex vivo ß-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.


Assuntos
Anemia Falciforme , Compostos Heterocíclicos , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sistemas CRISPR-Cas/genética , Edição de Genes , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Camundongos , Reprodutibilidade dos Testes , Globinas beta/genética
19.
Mol Ther ; 29(3): 1016-1027, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33678249

RESUMO

Recombinant adeno-associated virus (rAAV) vectors have the unique property of being able to perform genomic targeted integration (TI) without inducing a double-strand break (DSB). In order to improve our understanding of the mechanism behind TI mediated by AAV and improve its efficiency, we performed an unbiased genetic screen in human cells using a promoterless AAV-homologous recombination (AAV-HR) vector system. We identified that the inhibition of the Fanconi anemia complementation group M (FANCM) protein enhanced AAV-HR-mediated TI efficiencies in different cultured human cells by ∼6- to 9-fold. The combined knockdown of the FANCM and two proteins also associated with the FANCM complex, RecQ-mediated genome instability 1 (RMI1) and Bloom DNA helicase (BLM) from the BLM-topoisomerase IIIα (TOP3A)-RMI (BTR) dissolvase complex (RMI1, having also been identified in our screen), led to the enhancement of AAV-HR-mediated TI up to ∼17 times. AAV-HR-mediated TI in the presence of a nuclease (CRISPR-Cas9) was also increased by ∼1.5- to 2-fold in FANCM and RMI1 knockout cells, respectively. Furthermore, knockdown of FANCM in human CD34+ hematopoietic stem and progenitor cells (HSPCs) increased AAV-HR-mediated TI by ∼3.5-fold. This study expands our knowledge on the mechanisms related to AAV-mediated TI, and it highlights new pathways that might be manipulated for future improvements in AAV-HR-mediated TI.


Assuntos
Sistemas CRISPR-Cas , DNA Helicases/antagonistas & inibidores , Proteínas de Ligação a DNA/antagonistas & inibidores , Dependovirus/genética , Edição de Genes , Células-Tronco Hematopoéticas/metabolismo , RecQ Helicases/antagonistas & inibidores , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Vetores Genéticos , Células HeLa , Células-Tronco Hematopoéticas/citologia , Recombinação Homóloga , Humanos , RecQ Helicases/genética , RecQ Helicases/metabolismo
20.
Nat Med ; 27(4): 677-687, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33737751

RESUMO

ß-Thalassemia pathology is due not only to loss of ß-globin (HBB), but also to erythrotoxic accumulation and aggregation of the ß-globin-binding partner, α-globin (HBA1/2). Here we describe a Cas9/AAV6-mediated genome editing strategy that can replace the entire HBA1 gene with a full-length HBB transgene in ß-thalassemia-derived hematopoietic stem and progenitor cells (HSPCs), which is sufficient to normalize ß-globin:α-globin messenger RNA and protein ratios and restore functional adult hemoglobin tetramers in patient-derived red blood cells. Edited HSPCs were capable of long-term and bilineage hematopoietic reconstitution in mice, establishing proof of concept for replacement of HBA1 with HBB as a novel therapeutic strategy for curing ß-thalassemia.


Assuntos
Terapia Genética , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinas/metabolismo , alfa-Globinas/genética , Globinas beta/genética , Talassemia beta/genética , Talassemia beta/terapia , Anemia Falciforme/patologia , Animais , Antígenos CD34/metabolismo , Dependovirus/genética , Eritrócitos/metabolismo , Edição de Genes , Genes Reporter , Loci Gênicos , Transplante de Células-Tronco Hematopoéticas , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , RNA Guia de Cinetoplastídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA