Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Waste Biomass Valorization ; 13(7): 3127-3137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251381

RESUMO

Developing eco-friendly formulations using waste cooking oil as renewable biomass is of great interest and commercial importance in the fuels and lubricant industry. This manuscript reports novel study on preparing a biolubricant formulations as WCO-1, WCO-2 and WCO-3 by blending the curcumin extracted soybean waste cooking oil in three different compositions viz 10%, 20%, 30% v/v with the mineral base oil N-150. Curcumin was extracted as a natural antioxidant in 0.5 wt% waste cooking oil to inhibit thermal oxidation. This study comprises a detailed analysis in terms of tribological, rheological and thermophysical characteristics such as viscosity, viscosity index, pour point and flash point parameters of the biolubricant by standard ASTM methods. Further, tribological and rheological analysis was done by the four-ball wear tester and Anton Paar, MCR-72, respectively. The thermophysical evaluation of WCO formulated biolubricant has shown excellent properties. The viscosity index of the formulated biolubricant increases with an increase in the concentration of waste cooking oil. In contrast, the pour point has also been depressing at lower temperature conditions. Thus, WCO based biolubricant was found to be more effective at extreme temperature conditions than the mineral base oil (N-150). Rheological studies have indicated the non-Newtonian behaviour of the biolubricant with an increase in shear rate. Whereas, tribological analysis demonstrates that wear scar diameter has significantly reduced from 0.685 to 0.573 mm, and the coefficient of friction decreased from 0.117 to 0.080 with respect to the mineral base oil. Thus, a straightforward green approach has been discovered by directly utilizing waste cooking oil for biolubricant formulation.

2.
J Med Chem ; 58(24): 9498-509, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26488902

RESUMO

Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.


Assuntos
Antineoplásicos/química , Ribonucleotídeo Redutases/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Cristalografia por Raios X , Bases de Dados de Compostos Químicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Ftalimidas/química , Ftalimidas/farmacologia , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Ribonucleosídeo Difosfato Redutase , Ribonucleotídeo Redutases/química , Relação Estrutura-Atividade , Proteínas Supressoras de Tumor/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA