Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35564115

RESUMO

In recent years, several studies have focused their attention on the preparation of biocompatible and biodegradable nanocarriers of potential interest in the biomedical field, ranging from drug delivery systems to imaging and diagnosis. In this regard, natural biomolecules-such as proteins-represent an attractive alternative to synthetic polymers or inorganic materials, thanks to their numerous advantages, such as biocompatibility, biodegradability, and low immunogenicity. Among the most interesting proteins, keratin extracted from wool and feathers, as well as fibroin extracted from Bombyx mori cocoons, possess all of the abovementioned features required for biomedical applications. In the present review, we therefore aim to give an overview of the most important and efficient methodologies for obtaining drug-loaded keratin and fibroin nanoparticles, and of their potential for biomedical applications.

2.
Cell Physiol Biochem ; 55(S1): 196-212, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740285

RESUMO

BACKGROUND/AIMS: The ability of astrocytes to control extracellular volume homeostasis is critical for brain function and pathology. Uncovering the mechanisms of cell volume regulation by astrocytes will be important for identifying novel therapeutic targets for neurological conditions, such as those characterized by imbalances to hydro saline challenges (as in edema) or by altered cell volume regulation (as in glioma). One major challenge in studying the astroglial membrane channels involved in volume homeostasis in cell culture model systems is that the expression patterns of these membrane channels do not resemble those observed in vivo. In our previous study, we demonstrated that rat primary astrocytes grown on nanostructured interfaces based on hydrotalcite-like compounds (HTlc) in vitro are differentiated and display molecular and functional properties of in vivo astrocytes, such as the functional expression of inwardly rectifying K+ channel (Kir 4.1) and Aquaporin-4 (AQP4) at the astrocytic microdomain. Here, we take advantage of the properties of differentiated primary astrocytes in vitro to provide an insight into the mechanism underpinning astrocytic cell volume regulation and its correlation with the expression and function of AQP4, Transient Receptor Potential Vanilloid 4(TRPV4), and Volume Regulated Anion Channel (VRAC). METHODS: The calcein quenching method was used to study water transport and cell volume regulation. Calcium imaging and electrophysiology (patch-clamp) were used for functional analyses of calcium dynamics and chloride currents. Western blot and immunofluorescence were used to analyse the expression and localization of the channel proteins of interest. RESULTS: We found that the increase in water permeability, previously observed in differentiated astrocytes, occurs simultaneously with more efficient regulatory volume increase and regulatory volume decrease. Accordingly, the magnitude of the hypotonic induced intracellular calcium response, typically mediated by TRPV4, as well as the hypotonic induced VRAC current, was almost twice as high in differentiated astrocytes. Interestingly, while we confirmed increased AQP4 expression in the membrane of differentiated astrocytes, the expression of the channels TRPV4 and Leucine-Rich Repeats-Containing 8-A (LRRC8-A) were comparable between differentiated and non-differentiated astrocytes. CONCLUSION: The reported results indicate that AQP4 up-regulation observed in differentiated astrocytes might promote higher sensitivity of the cell to osmotic changes, resulting in increased magnitude of calcium signaling and faster kinetics of the RVD and RVI processes. The implications for cell physiology and the mechanisms underlying astrocytic interaction with nanostructured interfaces are discussed.


Assuntos
Astrócitos/citologia , Tamanho Celular , Animais , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Permeabilidade , Ratos Wistar , Canais de Cátion TRPV/metabolismo , Água/metabolismo
3.
Front Chem ; 8: 158, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32219091

RESUMO

In this work we report the preparation and characterization of free-standing keratin-based films containing Au/Ag nanorods. The effect of nanorods surface chemistry on the optical and mechanical properties of keratin composite films is fully investigated. Colloid nanorods confer to the keratin films interesting color effects due to plasmonic absorptions of the metal nanostructures. The presence of metal NRs induces also substantial change in the protein fluorescence emission. In particular, the relative contribution of the ordered-protein aggregates emission is enhanced by the presence of cysteine and thus strictly related to the surface chemistry of nanorods. The presence of more packed supramolecular structures in the films containing metal nanorods (in particular cysteine modified ones) is confirmed by ATR measurements. In addition, the films containing nanorods show a higher Young's modulus compared to keratin alone and again the effect is more pronounced for cysteine modified nanorods. Collectively, the reported results indicate the optical and mechanical properties of keratin composites films are related to a common property and can be tuned simultaneously, paving the way to the optimization and improvement of their performances and enhancing the exploitation of keratin composites in highly technological optoelectronic applications.

4.
FASEB J ; 34(5): 6539-6553, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32202681

RESUMO

Astrocytes are non-neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+ -mediated signaling. As they are tightly integrated into neural networks, label-free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live-cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3 R, TRPA1, TRPV4, and Aquaporin-4 are all involved in shaping the dynamics of infrared pulse-evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect that targeted control over calcium dynamics and water transport will help to study the crucial role of astrocytes in edema, ischemia, glioma progression, stroke, and epilepsy.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Raios Infravermelhos , Água/metabolismo , Animais , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/citologia , Astrócitos/efeitos da radiação , Transporte Biológico , Células Cultivadas , Homeostase , Ratos , Transdução de Sinais , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
5.
Mol Pharm ; 16(3): 931-942, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30702899

RESUMO

Histone deacetylases, HDACs, have been demonstrated to play a critical role in epigenetic signaling and were found to be overexpressed in several type of cancers; therefore, they represent valuable targets for anticancer therapy. 9-Hydroxystearic acid has been shown to bind the catalytic site of HDAC1, inducing G0/G1 phase cell cycle arrest and activation of the p21WAF1 gene, thus promoting cell growth inhibition and differentiation in many cancer cells. Despite the ( R) enantiomer of 9-hydroxystearic acid (9R) displaying a promising in vitro growth-inhibitory effect on the HT29 cell line, its scarce water solubility and micromolar activity require novel solutions for improving its efficacy and bioavailability. In this work, we describe the synthesis and in vitro biological profiling of 9R keratin nanoparticles (9R@ker) obtained through an in-water drug-induced aggregation process. The anticancer activity of 9R@ker was investigated in the HT29 cell line; the results indicate an increased fluidity of cell membrane and a higher intracellular ROS formation, resulting in an unexpected S phase cell cycle arrest (25% increase as compared to the control) induced by 9R@ker with respect to free 9R and an induction of cell death.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Descoberta de Drogas/métodos , Queratinas/química , Nanopartículas/química , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Ácidos Esteáricos/química , Albuminas/química , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética/métodos , Células HCT116 , Células HT29 , Histona Desacetilase 1/antagonistas & inibidores , Humanos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade , Ácidos Esteáricos/farmacologia
6.
Biosens Bioelectron ; 88: 15-24, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27321444

RESUMO

One of the main goals of nanomedicine in cancer is the development of effective drug delivery systems, primarily nanoparticles. Survivin, an overexpressed anti-apoptotic protein in cancer, represents a pharmacological target for therapy and a Molecular Beacon (MB) specific for survivin mRNA is available. In this study, the ability of polymethylmethacrylate nanoparticles (PMMA-NPs) to promote survivin MB uptake in human A549 cells was investigated. Fluorescent and positively charged core PMMA-NPs of nearly 60nm, obtained through an emulsion co-polymerization reaction, and the MB alone were evaluated in solution, for their analytical characterization; then, the MB specificity and functionality were verified after adsorption onto the PMMA-NPs. The carrier ability of PMMA-NPs in A549 was examined by confocal microscopy. With the optimized protocol, a hardly detectable fluorescent signal was obtained after incubation of the cells with the MB alone (fluorescent spots per cell of 1.90±0.40 with a mean area of 1.04±0.20µm2), while bright fluorescent spots inside the cells were evident by using the MB loaded onto the PMMA-NPs. (27.50±2.30 fluorescent spots per cell with a mean area of 2.35±0.16µm2). These results demonstrate the ability of the PMMA-NPs to promote the survivin-MB internalization, suggesting that this complex might represent a promising strategy for intracellular sensing and for the reduction of cancer cell proliferation.


Assuntos
Corantes Fluorescentes/química , Proteínas Inibidoras de Apoptose/genética , Nanopartículas/química , Polimetil Metacrilato/química , Sondas RNA/química , RNA Mensageiro/análise , RNA Mensageiro/genética , Células A549 , Técnicas Biossensoriais/métodos , Humanos , Nanopartículas/ultraestrutura , Imagem Óptica/métodos , Sondas RNA/genética , Espectrometria de Fluorescência/métodos , Survivina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA