Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Med Sci (Basel) ; 11(4)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37987325

RESUMO

Acute hypoxic respiratory failure (AHRF) is a prominent feature of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) critical illness. The severity of gas exchange impairment correlates with worse prognosis, and AHRF requiring mechanical ventilation is associated with substantial mortality. Persistent impaired gas exchange leading to hypoxemia often warrants the prolonged administration of a high fraction of inspired oxygen (FiO2). In SARS-CoV-2 AHRF, systemic vasculopathy with lung microthrombosis and microangiopathy further exacerbates poor gas exchange due to alveolar inflammation and oedema. Capillary congestion with microthrombosis is a common autopsy finding in the lungs of patients who die with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome. The need for a high FiO2 to normalise arterial hypoxemia and tissue hypoxia can result in alveolar hyperoxia. This in turn can lead to local alveolar oxidative stress with associated inflammation, alveolar epithelial cell apoptosis, surfactant dysfunction, pulmonary vascular abnormalities, resorption atelectasis, and impairment of innate immunity predisposing to secondary bacterial infections. While oxygen is a life-saving treatment, alveolar hyperoxia may exacerbate pre-existing lung injury. In this review, we provide a summary of oxygen toxicity mechanisms, evaluating the consequences of alveolar hyperoxia in COVID-19 and propose established and potential exploratory treatment pathways to minimise alveolar hyperoxia.


Assuntos
COVID-19 , Hiperóxia , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Humanos , SARS-CoV-2 , Estado Terminal , Hiperóxia/complicações , Oxigênio , Hipóxia , Inflamação
2.
ERJ Open Res ; 9(3)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37228288

RESUMO

Rationale: Pulmonary surfactant is vital for lung homeostasis as it reduces surface tension to prevent alveolar collapse and provides essential immune-regulatory and antipathogenic functions. Previous studies demonstrated dysregulation of some individual surfactant components in COPD. We investigated relationships between COPD disease measures and dysregulation of surfactant components to gain new insights into potential disease mechanisms. Methods: Bronchoalveolar lavage proteome and lipidome were characterised in ex-smoking mild/moderate COPD subjects (n=26) and healthy ex-smoking (n=20) and never-smoking (n=16) controls using mass spectrometry. Serum surfactant protein analysis was performed. Results: Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, surfactant protein (SP)-B, SP-A and SP-D concentrations were lower in COPD versus controls (log2 fold change (log2FC) -2.0, -2.2, -1.5, -0.5, -0.7 and -0.5 (adjusted p<0.02), respectively) and correlated with lung function. Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D, napsin A and CD44 inversely correlated with computed tomography small airways disease measures (expiratory to inspiratory mean lung density) (r= -0.56, r= -0.58, r= -0.45, r= -0.36, r= -0.44, r= -0.37, r= -0.40 and r= -0.39 (adjusted p<0.05)). Total phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol, SP-A, SP-B, SP-D and NAPSA inversely correlated with emphysema (% low-attenuation areas): r= -0.55, r= -0.61, r= -0.48, r= -0.51, r= -0.41, r= -0.31 and r= -0.34, respectively (adjusted p<0.05). Neutrophil elastase, known to degrade SP-A and SP-D, was elevated in COPD versus controls (log2FC 0.40, adjusted p=0.0390), and inversely correlated with SP-A and SP-D. Serum SP-D was increased in COPD versus healthy ex-smoking volunteers, and predicted COPD status (area under the curve 0.85). Conclusions: Using a multiomics approach, we demonstrate, for the first time, global surfactant dysregulation in COPD that was associated with emphysema, giving new insights into potential mechanisms underlying the cause or consequence of disease.

3.
Clin Sci (Lond) ; 135(22): 2559-2573, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34778899

RESUMO

Granulocyte macrophage colony stimulating factor (GM-CSF) is a key participant in, and a clinical target for, the treatment of inflammatory diseases including rheumatoid arthritis (RA). Therapeutic inhibition of GM-CSF signalling using monoclonal antibodies to the α-subunit of the GM-CSF receptor (GMCSFRα) has shown clear benefit in patients with RA, giant cell arteritis (GCAs) and some efficacy in severe SARS-CoV-2 infection. However, GM-CSF autoantibodies are associated with the development of pulmonary alveolar proteinosis (PAP), a rare lung disease characterised by alveolar macrophage (AM) dysfunction and the accumulation of surfactant lipids. We assessed how the anti-GMCSFRα approach might impact surfactant turnover in the airway. Female C57BL/6J mice received a mouse-GMCSFRα blocking antibody (CAM-3003) twice per week for up to 24 weeks. A parallel, comparator cohort of the mouse PAP model, GM-CSF receptor ß subunit (GMCSFRß) knock-out (KO), was maintained up to 16 weeks. We assessed lung tissue histopathology alongside lung phosphatidylcholine (PC) metabolism using stable isotope lipidomics. GMCSFRß KO mice reproduced the histopathological and biochemical features of PAP, accumulating surfactant PC in both broncho-alveolar lavage fluid (BALF) and lavaged lung tissue. The incorporation pattern of methyl-D9-choline showed impaired catabolism and not enhanced synthesis. In contrast, chronic supra-pharmacological CAM-3003 exposure (100 mg/kg) over 24 weeks did not elicit a histopathological PAP phenotype despite some changes in lung PC catabolism. Lack of significant impairment of AM catabolic function supports clinical observations that therapeutic antibodies to this pathway have not been associated with PAP in clinical trials.


Assuntos
Artrite Reumatoide/metabolismo , COVID-19/terapia , Proteinose Alveolar Pulmonar/imunologia , Surfactantes Pulmonares/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Artrite Reumatoide/terapia , Autoanticorpos/química , Líquido da Lavagem Broncoalveolar , COVID-19/imunologia , Colina/análogos & derivados , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/química , Inflamação , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteinose Alveolar Pulmonar/genética , SARS-CoV-2/imunologia , Tensoativos
4.
Am J Clin Nutr ; 112(6): 1438-1447, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778895

RESUMO

BACKGROUND: Lipid metabolism in pregnancy delivers PUFAs from maternal liver to the developing fetus. The transition at birth to diets less enriched in PUFA is especially challenging for immature, extremely preterm infants who are typically supported by total parenteral nutrition. OBJECTIVE: The aim was to characterize phosphatidylcholine (PC) and choline metabolism in preterm infants and demonstrate the molecular specificity of PC synthesis by the immature preterm liver in vivo. METHODS: This MS-based lipidomic study quantified the postnatal adaptations to plasma PC molecular composition in 31 preterm infants <28 weeks' gestational age. Activities of the cytidine diphosphocholine (CDP-choline) and phosphatidylethanolamine-N-methyltransferase (PEMT) pathways for PC synthesis were assessed from incorporations of deuterated methyl-D9-choline chloride. RESULTS: The concentration of plasma PC in these infants increased postnatally from median values of 481 (IQR: 387-798) µM at enrollment to 1046 (IQR: 616-1220) µM 5 d later (P < 0.001). Direct incorporation of methyl-D9-choline demonstrated that this transition was driven by an active CDP-choline pathway that synthesized PC enriched in species containing oleic and linoleic acids. A second infusion of methyl-D9-choline chloride at day 5 clearly indicated continued activity of this pathway. Oxidation of D9-choline through D9-betaine resulted in the transfer of 1 deuterated methyl group to S-adenosylmethionine. A very low subsequent transfer of this labeled methyl group to D3-PC indicated that liver PEMT activity was essentially inactive in these infants. CONCLUSIONS: This study demonstrated that the preterm infant liver soon after birth, and by extension the fetal liver, was metabolically active in lipoprotein metabolism. The low PEMT activity, which is the only pathway for endogenous choline synthesis and is responsible for hormonally regulated export of PUFAs from adult liver, strongly supports increased supplementation of preterm parenteral nutrition with both choline and PUFAs.


Assuntos
Adaptação Fisiológica , Colina/metabolismo , Ácidos Graxos Insaturados/metabolismo , Lactente Extremamente Prematuro/metabolismo , Fosfatidilcolinas/metabolismo , Estudos de Coortes , Feminino , Humanos , Recém-Nascido , Marcação por Isótopo , Masculino , Fosfatidilcolinas/sangue
5.
J Lipid Res ; 59(10): 1880-1892, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108154

RESUMO

Secreted pulmonary surfactant phosphatidylcholine (PC) has a complex intra-alveolar metabolism that involves uptake and recycling by alveolar type II epithelial cells, catabolism by alveolar macrophages, and loss up the bronchial tree. We compared the in vivo metabolism of animal-derived poractant alfa (Curosurf) and a synthetic surfactant (CHF5633) in adult male C57BL/6 mice. The mice were dosed intranasally with either surfactant (80 mg/kg body weight) containing universally 13C-labeled dipalmitoyl PC (DPPC) as a tracer. The loss of [U13C]DPPC from bronchoalveolar lavage and lung parenchyma, together with the incorporation of 13C-hydrolysis fragments into new PC molecular species, was monitored by electrospray ionization tandem mass spectrometry. The catabolism of CHF5633 was considerably delayed compared with poractant alfa, the hydrolysis products of which were cleared more rapidly. There was no selective resynthesis of DPPC and, strikingly, acyl remodeling resulted in preferential synthesis of polyunsaturated PC species. In conclusion, both surfactants were metabolized by similar pathways, but the slower catabolism of CHF5633 resulted in longer residence time in the airways and enhanced recycling of its hydrolysis products into new PC species.


Assuntos
Produtos Biológicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Proteína B Associada a Surfactante Pulmonar/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Surfactantes Pulmonares/metabolismo , Animais , Produtos Biológicos/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fragmentos de Peptídeos/farmacologia , Fosfatidilcolinas/biossíntese , Fosfatidilcolinas/farmacologia , Fosfolipídeos/farmacologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/farmacologia
6.
J Lipid Res ; 59(6): 1034-1045, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29716960

RESUMO

Acute respiratory distress syndrome (ARDS) is associated with a severe pro-inflammatory response; although decreased plasma cholesterol concentration has been linked to systemic inflammation, any association of phospholipid metabolic pathways with ARDS has not been characterized. Plasma phosphatidylcholine (PC), the major phospholipid of circulating lipoproteins, is synthesized in human liver by two biologically diverse pathways: the cytidine diphosphocholine (CDP):choline and phosphatidylethanolamine N-methyltransferase (PEMT) pathways. Here, we used ESI-MS/MS both to characterize plasma PC compositions and to quantify metabolic fluxes of both pathways using stable isotopes in patients with severe ARDS and in healthy controls. Direct incorporation of methyl-D9-choline estimated CDP:choline pathway flux, while PEMT flux was determined from incorporations of one and two methyl-D3 groups derived from methyl-D9-choline. The results of MS/MS analysis showed significant alterations in plasma PC composition in patients with ARDS versus healthy controls. In particular, the increased overall methyl-D9-PC enrichment and, most importantly, the much lower methyl-D3-PC and methyl-D6-PC enrichments suggest increased flux through the CDP:choline pathway and reduced flux through the PEMT pathway in ARDS. To our knowledge, this study is the first to demonstrate significant plasma PC molecular compositional changes combined with associated alterations in the dynamics of PC synthetic pathways in patients with ARDS.


Assuntos
Fígado/metabolismo , Fosfatidilcolinas/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Metilação , Pessoa de Meia-Idade
7.
BMC Syst Biol ; 12(1): 60, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29843806

RESUMO

BACKGROUND: Multilevel data integration is becoming a major area of research in systems biology. Within this area, multi-'omics datasets on complex diseases are becoming more readily available and there is a need to set standards and good practices for integrated analysis of biological, clinical and environmental data. We present a framework to plan and generate single and multi-'omics signatures of disease states. METHODS: The framework is divided into four major steps: dataset subsetting, feature filtering, 'omics-based clustering and biomarker identification. RESULTS: We illustrate the usefulness of this framework by identifying potential patient clusters based on integrated multi-'omics signatures in a publicly available ovarian cystadenocarcinoma dataset. The analysis generated a higher number of stable and clinically relevant clusters than previously reported, and enabled the generation of predictive models of patient outcomes. CONCLUSIONS: This framework will help health researchers plan and perform multi-'omics big data analyses to generate hypotheses and make sense of their rich, diverse and ever growing datasets, to enable implementation of translational P4 medicine.


Assuntos
Doença/genética , Biologia de Sistemas/métodos , Biomarcadores/metabolismo , Análise por Conglomerados , Reações Falso-Positivas , Aprendizado de Máquina , Controle de Qualidade
8.
Metabolomics ; 14(10): 123, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-30830396

RESUMO

BACKGROUND: Lung epithelial lining fluid (ELF)-sampled through sputum induction-is a medium rich in cells, proteins and lipids. However, despite its key role in maintaining lung function, homeostasis and defences, the composition and biology of ELF, especially in respect of lipids, remain incompletely understood. OBJECTIVES: To characterise the induced sputum lipidome of healthy adult individuals, and to examine associations between different ELF lipid phenotypes and the demographic characteristics within the study cohort. METHODS: Induced sputum samples were obtained from 41 healthy non-smoking adults, and their lipid compositions analysed using a combination of untargeted shotgun and liquid chromatography mass spectrometry methods. Topological data analysis (TDA) was used to group subjects with comparable sputum lipidomes in order to identify distinct ELF phenotypes. RESULTS: The induced sputum lipidome was diverse, comprising a range of different molecular classes, including at least 75 glycerophospholipids, 13 sphingolipids, 5 sterol lipids and 12 neutral glycerolipids. TDA identified two distinct phenotypes differentiated by a higher total lipid content and specific enrichments of diacyl-glycerophosphocholines, -inositols and -glycerols in one group, with enrichments of sterols, glycolipids and sphingolipids in the other. Subjects presenting the lipid-rich ELF phenotype also had significantly higher BMI, but did not differ in respect of other demographic characteristics such as age or gender. CONCLUSIONS: We provide the first evidence that the ELF lipidome varies significantly between healthy individuals and propose that such differences are related to weight status, highlighting the potential impact of (over)nutrition on lung lipid metabolism.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Lipídeos/análise , Pulmão/citologia , Adolescente , Adulto , Idoso , Estudos de Coortes , Feminino , Voluntários Saudáveis , Humanos , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Fenótipo , Escarro/química , Escarro/metabolismo , Adulto Jovem
9.
Am J Respir Cell Mol Biol ; 57(4): 448-458, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28489415

RESUMO

Maintenance of tissue-specific organ lipid compositions characterizes mammalian lipid homeostasis. The lungs and liver synthesize mixed phosphatidylcholine (PC) molecular species that are subsequently tailored for function. The lungs progressively enrich disaturated PC directed to lamellar body surfactant stores before secretion. The liver accumulates polyunsaturated PC directed to very-low-density lipoprotein assembly and secretion, or to triglyceride stores. In each tissue, selective PC species enrichment mechanisms lie at the heart of effective homeostasis. We tested for potential coordination between these spatially separated but possibly complementary phenomena under a major derangement of lung PC metabolism, pulmonary alveolar proteinosis (PAP), which overwhelms homeostasis and leads to excessive surfactant accumulation. Using static and dynamic lipidomics techniques, we compared (1) tissue PC compositions and contents, and (2) in lungs, the absolute rates of synthesis in both control mice and the granulocyte-macrophage colony-stimulating factor knockout model of PAP. Significant disaturated PC accumulation in bronchoalveolar lavage fluid, alveolar macrophage, and lavaged lung tissue occurred alongside increased PC synthesis, consistent with reported defects in alveolar macrophage surfactant turnover. However, microscopy using oil red O staining, coherent anti-Stokes Raman scattering, second harmonic generation, and transmission electron microscopy also revealed neutral-lipid droplet accumulations in alveolar lipofibroblasts of granular macrophage colony-stimulating factor knockout animals, suggesting that lipid homeostasis deficits extend beyond alveolar macrophages. PAP plasma PC composition was significantly polyunsaturated fatty acid enriched, but the content was unchanged and hepatic polyunsaturated fatty acid-enriched PC content increased by 50% with an accompanying micro/macrovesicular steatosis and a fibrotic damage pattern consistent with nonalcoholic fatty liver disease. These data suggest a hepatopulmonary axis of PC metabolism coordination, with wider implications for understanding and managing lipid pathologies in which compromise of one organ has unexpected consequences for another.


Assuntos
Fígado Gorduroso/metabolismo , Fígado/metabolismo , Macrófagos Alveolares/metabolismo , Fosfatidilcolinas/metabolismo , Proteinose Alveolar Pulmonar/metabolismo , Alvéolos Pulmonares/metabolismo , Animais , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Especificidade de Órgãos/genética , Fosfatidilcolinas/genética , Proteinose Alveolar Pulmonar/etiologia , Proteinose Alveolar Pulmonar/genética
10.
Acta Paediatr ; 106(3): 430-437, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27886403

RESUMO

AIM: Respiratory distress syndrome (RDS) is a major cause of mortality and morbidity in premature infants. By the time symptoms appear, it may already be too late to prevent a severe course, with bronchopulmonary dysplasia or mortality. We aimed to develop a rapid test of lung maturity for targeting surfactant supplementation. METHODS: Concentrations of the most surface-active lung phospholipid dipalmitoylphosphatidylcholine and sphingomyelin in gastric aspirates from premature infants were measured by mass spectrometry and expressed as the lecithin/sphingomyelin ratio (L/S). The same aspirates were analysed with mid-infrared spectroscopy. Subsequently, L/S was measured in gastric aspirates and oropharyngeal secretions from another group of premature infants using spectroscopy and the results were compared with RDS development. The 10-minute analysis required 10 µL of aspirate. RESULTS: An L/S algorithm was developed based on 89 aspirates. Subsequently, gastric aspirates were sampled in 136 infants of 24-31 weeks of gestation and 61 (45%) developed RDS. The cut-off value of L/S was 2.2, sensitivity was 92%, and specificity was 73%. In 59 cases, the oropharyngeal secretions had less valid L/S than gastric aspirate results. CONCLUSION: Our rapid test for lung maturity, based on spectroscopy of gastric aspirate, predicted RDS with high sensitivity.


Assuntos
Pulmão/crescimento & desenvolvimento , Fosfatidilcolinas/análise , Síndrome do Desconforto Respiratório do Recém-Nascido/diagnóstico , Esfingomielinas/análise , Secreções Corporais/química , Feminino , Humanos , Recém-Nascido , Masculino , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
11.
BMC Med ; 13: 93, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25902844

RESUMO

BACKGROUND: Ready-to-use therapeutic foods (RUTF) are lipid-based pastes widely used in the treatment of acute malnutrition. Current specifications for RUTF permit a high n-6 polyunsaturated fatty acid (PUFA) content and low n-3 PUFA, with no stipulated requirements for preformed long-chain n-3 PUFA. The objective of this study was to develop an RUTF with elevated short-chain n-3 PUFA and measure its impact, with and without fish oil supplementation, on children's PUFA status during treatment of severe acute malnutrition. METHODS: This randomized controlled trial in children with severe acute malnutrition in rural Kenya included 60 children aged 6 to 50 months who were randomized to receive i) RUTF with standard composition; ii) RUTF with elevated short chain n-3 PUFA; or iii) RUTF with elevated short chain n-3 PUFA plus fish oil capsules. Participants were followed-up for 3 months. The primary outcome was erythrocyte PUFA composition. RESULTS: Erythrocyte docosahexaenoic acid (DHA) content declined from baseline in the two arms not receiving fish oil. Erythrocyte long-chain n-3 PUFA content following treatment was significantly higher for participants in the arm receiving fish oil than for those in the arms receiving RUTF with elevated short chain n-3 PUFA or standard RUTF alone: 3 months after enrollment, DHA content was 6.3% (interquartile range 6.0-7.3), 4.5% (3.9-4.9), and 3.9% (2.4-5.7) of total erythrocyte fatty acids (P <0.001), respectively, while eicosapentaenoic acid (EPA) content was 2.0% (1.5-2.6), 0.7% (0.6-0.8), and 0.4% (0.3-0.5) (P <0.001). RUTF with elevated short chain n-3 PUFA and fish oil capsules were acceptable to participants and carers, and there were no significant differences in safety outcomes. CONCLUSIONS: PUFA requirements of children with SAM are not met by current formulations of RUTF, or by an RUTF with elevated short-chain n-3 PUFA without additional preformed long-chain n-3 PUFA. Clinical and growth implications of revised formulations need to be addressed in large clinical trials. TRIAL REGISTRATION: Clinicaltrials.gov NCT01593969. Registered 4 May 2012.


Assuntos
Suplementos Nutricionais , Fast Foods , Ácidos Graxos Ômega-3/administração & dosagem , Óleos de Peixe/administração & dosagem , Desnutrição/dietoterapia , Doença Aguda , Pré-Escolar , Ácidos Docosa-Hexaenoicos , Método Duplo-Cego , Ácido Eicosapentaenoico , Ácidos Graxos Insaturados/sangue , Feminino , Humanos , Lactente , Quênia , Lipídeos/sangue , Masculino
12.
Int J Biochem Cell Biol ; 44(11): 1839-46, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22728312

RESUMO

Crohn's disease is a chronic inflammatory condition largely affecting the terminal ileum and large bowel. A contributing cause is the failure of an adequate acute inflammatory response as a result of impaired secretion of pro-inflammatory cytokines by macrophages. This defective secretion arises from aberrant vesicle trafficking, misdirecting the cytokines to lysosomal degradation. Aberrant intestinal permeability is also well-established in Crohn's disease. Both the disordered vesicle trafficking and increased bowel permeability could result from abnormal lipid composition. We thus measured the sphingo- and phospholipid composition of macrophages, using mass spectrometry and stable isotope labelling approaches. Stimulation of macrophages with heat-killed Escherichia coli resulted in three main changes; a significant reduction in the amount of individual ceramide species, an altered composition of phosphatidylcholine, and an increased rate of phosphatidylcholine synthesis in macrophages. These changes were observed in macrophages from both healthy control individuals and patients with Crohn's disease. The only difference detected between control and Crohn's disease macrophages was a reduced proportion of newly-synthesised phosphatidylinositol 16:0/18:1 over a defined time period. Shotgun lipidomics analysis of macroscopically non-inflamed ileal biopsies showed a significant decrease in this same lipid species with overall preservation of sphingolipid, phospholipid and cholesterol composition.


Assuntos
Ceramidas/metabolismo , Doença de Crohn/metabolismo , Metabolômica , Fosfatidilcolinas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfatidilserinas/metabolismo , Adulto , Biópsia , Estudos de Casos e Controles , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Demografia , Escherichia coli , Feminino , Humanos , Íleo/metabolismo , Íleo/patologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Esfingolipídeos/metabolismo
13.
Curr Opin Clin Nutr Metab Care ; 15(2): 127-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22316558

RESUMO

PURPOSE OF REVIEW: Lipidomics characterizes the composition of intact lipid molecular species in biological systems and the field has been driven by some spectacular advances in mass spectrometry instrumentation and applications. This review will highlight these advances and outline their recent application to address clinical issues. RECENT FINDINGS: This review first identifies recent advances in lipid detection and analysis by a variety of mass spectrometry techniques, then reviews specific application including stable isotope labelling of lipids, lipid mass spectrometry imaging, data analysis and bioinformatics, and finally presents examples of the application of lipidomics to selected disease states. SUMMARY: Lipidomics so far has been principally concerned with identifying novel methodologies, but recent advances demonstrating applications in diabetes, neurodegenerative diseases, cystic fibrosis and other respiratory diseases clearly indicate the potential usefulness of lipidomics both to generate biomarkers of disease and to probe signalling and metabolic processes.


Assuntos
Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Biomarcadores/análise , Biomarcadores/química , Biologia Computacional/métodos , Humanos , Marcação por Isótopo , Metabolismo dos Lipídeos , Lipídeos/química
14.
J Biol Chem ; 287(13): 10099-10114, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22267724

RESUMO

Pulmonary inflammation is associated with altered lipid synthesis and clearance related to diabetes, obesity, and various inherited metabolic disorders. In many tissues, lipogenesis is regulated at the transcriptional level by the activity of sterol-response element-binding proteins (SREBP). The role of SREBP activation in the regulation of lipid metabolism in the lung was assessed in mice in which both Insig1 and Insig2 genes, encoding proteins that bind and inhibit SREBPs in the endoplasmic reticulum, were deleted in alveolar type 2 cells. Although deletion of either Insig1 or Insig2 did not alter SREBP activity or lipid homeostasis, deletion of both genes (Insig1/2(Δ/Δ) mice) activated SREBP1, causing marked accumulation of lipids that consisted primarily of cholesterol esters and triglycerides in type 2 epithelial cells and alveolar macrophages. Neutral lipids accumulated in type 2 cells in association with the increase in mRNAs regulating fatty acid, cholesterol synthesis, and inflammation. Although bronchoalveolar lavage fluid phosphatidylcholine was modestly decreased, lung phospholipid content and lung function were maintained. Insig1/2(Δ/Δ) mice developed lung inflammation and airspace abnormalities associated with the accumulation of lipids in alveolar type 2 cells, alveolar macrophages, and within alveolar spaces. Deletion of Insig1/2 activated SREBP-enhancing lipogenesis in respiratory epithelial cells resulting in lipotoxicity-related lung inflammation and tissue remodeling.


Assuntos
Lipogênese , Proteínas de Membrana/metabolismo , Pneumonia/metabolismo , Alvéolos Pulmonares/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Animais , Ésteres do Colesterol/genética , Ésteres do Colesterol/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Pneumonia/genética , Pneumonia/patologia , Alvéolos Pulmonares/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Proteínas de Ligação a Elemento Regulador de Esterol/genética , Triglicerídeos/genética , Triglicerídeos/metabolismo
15.
J Lipid Res ; 52(2): 399-407, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21068006

RESUMO

Phosphatidylcholine (PC) synthesis by the direct cytidine diphosphate choline (CDP-choline) pathway in rat liver generates predominantly mono- and di-unsaturated molecular species, while polyunsaturated PC species are synthesized largely by the phosphatidylethanolamine-N-methyltransferase (PEMT) pathway. Although altered PC synthesis has been suggested to contribute to development of hepatocarcinoma and nonalcoholic steatohepatitis, analysis of the specificity of hepatic PC metabolism in human patients has been limited by the lack of sensitive and safe methodologies. Here we incorporated a deuterated methyl-D(9)-labled choline chloride, to quantify biosynthesis fluxes through both of the PC synthetic pathways in vivo in human volunteers and compared these fluxes with those in mice. Rates and molecular specificities of label incorporated into mouse liver and plasma PC were very similar and strongly suggest that label incorporation into human plasma PC can provide a direct measure of hepatic PC synthesis in human subjects. Importantly, we demonstrate for the first time that the PEMT pathway in human liver is selective for polyunsaturated PC species, especially those containing docosahexaenoic acid. Finally, we present a multiple isotopomer distribution analysis approach, based on transfer of deuterated methyl groups to S-adenosylmethionine and subsequent sequential methylations of PE, to quantify absolute flux rates through the PEMT pathway that are applicable to studies of liver dysfunction in clinical studies.


Assuntos
Citidina Difosfato Colina/metabolismo , Fosfatidilcolinas/biossíntese , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Adulto , Animais , Colina/metabolismo , Deutério , Feminino , Humanos , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Fosfatidiletanolamina N-Metiltransferase/sangue
16.
Immunobiology ; 216(1-2): 72-9, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-20378199

RESUMO

Surfactant protein D (SP-D) plays an important role in lung host defence. SP-D levels have been shown to be depleted in cystic fibrosis (CF) patients. A recombinant fragment of the human SP-D (rfhSP-D) which consist of a hydrophobic neck and a CRD has been shown to be active in vivo and partially reverses the symptoms of the SP-D deficiency in the lungs when administered to SP-D knock-out mice. In this paper we studied the in vitro effect of different proteolytic enzymes commonly found in CF patients lungs, such as neutrophil elastase, cathepsin G and protease 3 as well as Pseudomonas elastase, on rfhSP-D. It was also shown that cleavage was inhibited by physiological concentration of calcium. When Western blot was compared with ELISA, we show that an anti-SP-D ELISA is a not a reliable assay of functional SP-D levels since non-functional fragments of SP-D are also detected. Thus, ELISA cannot be used as a reliable "diagnostic" tool for SP-D deficiency. Finally, we observe that SP-D is not cleaved in control patients but is degraded in about half the samples from cystic fibrosis patients, indicating that degradation of endogenous SP-D, by enzymes present in CF bronchioalveolar lavage fluid (BALF), may lead to deficiency of the protein as seen in CF and therefore rfhSP-D may be a useful future therapy.


Assuntos
Cálcio/metabolismo , Fibrose Cística/metabolismo , Fragmentos de Peptídeos/metabolismo , Pseudomonas/enzimologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Adolescente , Proteínas de Bactérias/metabolismo , Western Blotting , Líquido da Lavagem Broncoalveolar/química , Criança , Pré-Escolar , Fibrose Cística/diagnóstico , Fibrose Cística/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Elastase Pancreática/metabolismo , Fragmentos de Peptídeos/genética , Peptídeo Hidrolases/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , Transgenes/genética
17.
J Neurochem ; 111(3): 737-44, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19712054

RESUMO

Snake pre-synaptic phospholipase A(2) neurotoxins paralyse the neuromuscular junction by releasing phospholipid hydrolysis products that alter curvature and permeability of the pre-synaptic membrane. Here, we report results deriving from the first chemical analysis of the action of these neurotoxic phospholipases in neurons, made possible by the use of high sensitivity mass spectrometry. The time-course of the phospholipase A(2) activity (PLA(2)) hydrolysis of notexin, beta-bungarotoxin, taipoxin and textilotoxin acting in cultured neurons was determined. At variance from their enzymatic activities in vitro, these neurotoxins display comparable kinetics of lysophospholipid release in neurons, reconciling the large discrepancy between their in vivo toxicities and their in vitro enzymatic activities. The ratios of the lyso derivatives of phosphatidyl choline, ethanolamine and serine obtained here together with the known distribution of these phospholipids among cell membranes, suggest that most PLA(2) hydrolysis takes place on the cell surface. Although these toxins were recently shown to enter neurons, their intracellular hydrolytic action and the activation of intracellular PLA(2)s appear to contribute little, if any, to the phospholipid hydrolysis measured here.


Assuntos
Venenos Elapídicos/farmacologia , Neurônios/efeitos dos fármacos , Fosfolipases A2/análise , Venenos de Serpentes/farmacologia , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Células Cultivadas , Cerebelo/citologia , Venenos Elapídicos/classificação , Lipídeos/análise , Neuroblastoma , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Fosfolipases A2/metabolismo , Ratos , Fatores de Tempo
18.
J R Soc Interface ; 5(28): 1371-86, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18426775

RESUMO

The alkyllysophospholipid (ALP) analogues Mitelfosine and Edelfosine are anticancer drugs whose mode of action is still the subject of debate. It is agreed that the primary interaction of these compounds is with cellular membranes. Furthermore, the membrane-associated protein CTP: phosphocholine cytidylyltransferase (CCT) has been proposed as the critical target. We present the evaluation of our hypothesis that ALP analogues disrupt membrane curvature elastic stress and inhibit membrane-associated protein activity (e.g. CCT), ultimately resulting in apoptosis. This hypothesis was tested by evaluating structure-activity relationships of ALPs from the literature. In addition we characterized the lipid typology, cytotoxicity and critical micelle concentration of novel ALP analogues that we synthesized. Overall we find the literature data and our experimental data provide excellent support for the hypothesis, which predicts that the most potent ALP analogues will be type I lipids.


Assuntos
Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Colina-Fosfato Citidililtransferase/metabolismo , Neoplasias/tratamento farmacológico , Éteres Fosfolipídicos/farmacologia , Antineoplásicos/metabolismo , Colina-Fosfato Citidililtransferase/antagonistas & inibidores , Elasticidade , Células HL-60 , Humanos , Micelas , Estrutura Molecular , Éteres Fosfolipídicos/metabolismo , Estresse Mecânico , Relação Estrutura-Atividade , Sais de Tetrazólio , Tiazóis
20.
Atherosclerosis ; 191(1): 54-62, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16765356

RESUMO

BACKGROUND: Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an emerging cardiovascular risk marker. To explore the biologic role of Lp-PLA2 in atherosclerosis, we examined its expression and contribution to leukocyte activation under proatherogenic conditions. METHODS AND RESULTS: Following the induction of diabetes and hypercholesterolemia in a porcine model, a rapid increase in plasma Lp-PLA2 activity was observed at 1 month. This was accompanied by upregulated Lp-PLA2 mRNA expression by peripheral blood mononuclear cells (PBMC) at 3 months, and elevated Lp-PLA2 mRNA expression in coronary arteries at 6 months. These changes were paralleled by increased inflammatory responses by circulating PBMC (ICAM-1, IL-6), in coronary tissues (ICAM-1, VCAM-1), and the subsequent accumulation of inflammatory cells. In human PBMC, proinflammatory mediators augmented the synthesis and release of functional Lp-PLA2. Furthermore, lysophosphatidylcholine (lysoPC), a product of Lp-PLA2 activity, induced an increase in several inflammatory cytokines (IL-1beta, IL-6, TNF-alpha) in a concentration-dependent manner. In contrast, Lp-PLA2 inhibition (SB677116; 1 microM) abrogated the inflammatory response elicited by oxidized LDL. CONCLUSIONS: In an experimental model of diabetes and hypercholesterolemia, leukocyte activation was associated with augmented Lp-PLA2 expression. In vitro, Lp-PLA2 activity mediated leukocyte activation and inflammatory responses, whereas Lp-PLA2 inhibition abolished inflammatory responses induced by oxidized LDL. Collectively, these observations support a proatherogenic role for Lp-PLA2.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Vasos Coronários/imunologia , Diabetes Mellitus Experimental/imunologia , Hipercolesterolemia/imunologia , Leucócitos Mononucleares/metabolismo , Lipoproteínas LDL/fisiologia , Animais , Aterosclerose/imunologia , Doença da Artéria Coronariana/imunologia , Dieta Aterogênica , Modelos Animais de Doenças , Inflamação/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-6/metabolismo , Leucócitos Mononucleares/imunologia , Masculino , Fosfolipases A2 , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA