Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Eng Technol ; 11(2): 205-218, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31916039

RESUMO

PURPOSE: The objective of this study was to bioengineer 3D patches from cardiac myocytes that have been reprogrammed from human adipogenic mesenchymal stem cells (hADMSCs). METHODS: Human adipogenic mesenchymal stem cells (hADMSCs) were reprogrammed to form cardiac myocytes using transcription factors ETS2 and MESP1. Reprogrammed cardiac myocytes were cultured in a fibrin gel to bioengineer 3D patch patches. The effect of initial plating density (1-25 million cells per patch), time (28-day culture period) and treatment with 1 µM isoproterenol and 1 µM epinephrine were evaluated. RESULTS: 3D patches were fabricated using cardiac myocytes that have been reprogrammed from hADMSCs. Based on optimization studies, it was determined that 10 million cells were needed to bioengineer a single patch, that measured 2 × 2 cm2. Furthermore, 3D patches fabricated 10 million cells were stable in culture for up to 28 days. Treatment of 3D patches with 1 µM isoproterenol and 1 µM epinephrine resulted in an increase in the electrical properties, as measured by electrical impulse amplitude and frequency. An increase in the expression of mTOR, KCNV1, GJA5, KCNJ16, CTNNT2, KCNV2, MYO3, FOXO1 and KCND2 was noted in response to treatment of 3D patches with isoproterenol and epinephrine. CONCLUSION: Based on the results of this study, there is evidence to support the successful fabrication of a highly functional 3D patches with measurable electrical activity using cardiac myocytes reprogrammed from hADMSCs. 3D patches fabricated using optimal conductions described in this study can be used to improve the functional properties of failing hearts. Predominantly, in case of the infarcted hearts with partial loss of electrical activity, the electrical properties of the 3D patches may restore the electrical activity of the heart.


Assuntos
Adipogenia , Técnicas de Reprogramação Celular , Reprogramação Celular , Insuficiência Cardíaca/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Miócitos Cardíacos/transplante , Engenharia Tecidual , Agonistas Adrenérgicos/farmacologia , Células Cultivadas , Condutividade Elétrica , Epinefrina/farmacologia , Fibrina/metabolismo , Regulação da Expressão Gênica , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Isoproterenol/farmacologia , Potenciais da Membrana , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fatores de Tempo
2.
J Tissue Eng Regen Med ; 14(2): 306-318, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31821703

RESUMO

Clinical trials using human adipogenic mesenchymal stem cells (hAdMSCs) for the treatment of cardiac diseases have shown improvement in cardiac function and were proven safe. However, hAdMSCs do not convert efficiently into cardiomyocytes (CMs) or vasculature. Thus, reprogramming hAdMSCs into myocyte progenitors may fare better in future investigations. To reprogramme hAdMSCs into electrically conductive cardiac progenitor cells, we pioneered a three-step reprogramming strategy that uses proven MESP1/ETS2 transcription factors, ß-adrenergic and hypoxic signalling induced in three-dimensional (3D) cardiospheres. In Stage 1, ETS2 and MESP1 activated NNKX2.5, TBX5, MEF2C, dHAND, and GATA4 during the conversion of hAdMSCs into cardiac progenitor cells. Next, in Stage 2, ß2AR activation repositioned cardiac progenitors into de novo immature conductive cardiac cells, along with the appearance of RYR2, CAV2.1, CAV3.1, NAV1.5, SERCA2, and CX45 gene transcripts and displayed action potentials. In Stage 3, electrical conduction that was fostered by 3D cardiospheres formed in a Synthecon®, Inc. rotating bioreactor induced the appearance of hypoxic genes: HIF-1α/ß, PCG 1α/ß, and NOS2, which coincided with the robust activation of adult contractile genes including MLC2v, TNNT2, and TNNI3, ion channel genes, and the appearance of hyperpolarization-activated and cyclic nucleotide-gated channels (HCN1-4). Conduction velocities doubled to ~200 mm/s after hypoxia and doubled yet again after dissociation of the 3D cell clusters to ~400 mm/s. By comparison, normal conduction velocities within working ventricular myocytes in the whole heart range from 0.5 to 1 m/s. Epinephrine stimulation of stage 3 cardiac cells in patches resulted in an increase in amplitude of the electrical wave, indicative of conductive cardiac cells. Our efficient protocol that converted hAdMSCs into highly conductive cardiac progenitors demonstrated the potential utilization of stage 3 cells for tissue engineering applications for cardiac repair.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Receptores Adrenérgicos beta/metabolismo , Adipogenia , Adrenérgicos , Reatores Biológicos , Diferenciação Celular/fisiologia , Proliferação de Células , Condutividade Elétrica , Epinefrina/farmacologia , Humanos , Hipóxia , Cinética , Miócitos Cardíacos/citologia , Transdução de Sinais , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 109(32): 13016-21, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22826236

RESUMO

Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.


Assuntos
Transdiferenciação Celular/fisiologia , Fibroblastos/citologia , Mioblastos Cardíacos/citologia , Proteína Proto-Oncogênica c-ets-2/metabolismo , Pele/citologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Western Blotting , Transdiferenciação Celular/genética , Citometria de Fluxo , Imunofluorescência , Técnicas de Inativação de Genes , Humanos , Camundongos , Mioblastos Cardíacos/fisiologia , Reação em Cadeia da Polimerase , Proteína Proto-Oncogênica c-ets-2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Nucleic Acids Res ; 32(15): 4704-12, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15342791

RESUMO

Interest to the left-handed DNA conformation has been recently boosted by the findings that a number of proteins contain the Zalpha domain, which has been shown to specifically recognize Z-DNA. The biological function of Zalpha is presently unknown, but it has been suggested that it may specifically direct protein regions of Z-DNA induced by negative supercoiling in actively transcribing genes. Many studies, including a crystal structure in complex with Z-DNA, have focused on the human ADAR1 Zalpha domain in isolation. We have hypothesized that the recognition of a Z-DNA sequence by the Zalpha(ADAR1) domain is context specific, occurring under energetic conditions, which favor Z-DNA formation. To test this hypothesis, we have applied atomic force microscopy to image Zalpha(ADAR1) complexed with supercoiled plasmid DNAs. We have demonstrated that the Zalpha(ADAR1) binds specifically to Z-DNA and preferentially to d(CG)(n) inserts, which require less energy for Z-DNA induction compared to other sequences. A notable finding is that site-specific Zalpha binding to d(GC)(13) or d(GC)(2)C(GC)(10) inserts is observed when DNA supercoiling is insufficient to induce Z-DNA formation. These results indicate that Zalpha(ADAR1) binding facilities the B-to-Z transition and provides additional support to the model that Z-DNA binding proteins may regulate biological processes through structure-specific recognition.


Assuntos
Adenosina Desaminase/química , DNA Super-Helicoidal/ultraestrutura , DNA Forma Z/ultraestrutura , Adenosina Desaminase/metabolismo , Sítios de Ligação , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , DNA Forma Z/química , DNA Forma Z/metabolismo , Humanos , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/ultraestrutura , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA
5.
J Mol Biol ; 326(4): 1095-111, 2003 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-12589756

RESUMO

A number of human hereditary diseases have been associated with the instability of DNA repeats in the genome. Recently, spinocerebellar ataxia type 10 has been associated with expansion of the pentanucleotide repeat (ATTCT)(n).(AGAAT)(n) from a normal range of ten to 22 to as many as 4500 copies. The structural properties of this repeat cloned in circular plasmids were studied by a variety of methods. Two-dimensional gel electrophoresis and atomic force microscopy detected local DNA unpairing in supercoiled plasmids. Chemical probing analysis indicated that, at moderate superhelical densities, the (ATTCT)(n).(AGAAT)(n) repeat forms an unpaired region, which further extends into adjacent A+T-rich flanking sequences at higher superhelical densities. The superhelical energy required to initiate duplex unpairing is essentially length-independent from eight to 46 repeats. In plasmids containing five repeats, minimal unpairing of (ATTCT)(5).(AGAAT)(5) occurred while 2D gel analysis and chemical probing indicate greater unpairing in A+T-rich sequences in other regions of the plasmid. The observed experimental results are consistent with a statistical mechanical, computational analysis of these supercoiled plasmids. For plasmids containing 29 repeats, which is just above the normal human size range, flanked by an A+T-rich sequence, atomic force microscopy detected the formation of a locally condensed structure at high superhelical densities. However, even at high superhelical densities, DNA strands within the presumably compact A+T-rich region were accessible to small chemicals and oligonucleotide hybridization. Thus, DNA strands in this "collapsed structure" remain unpaired and accessible for interaction with other molecules. The unpaired DNA structure functioned as an aberrant replication origin, in that it supported complete plasmid replication in a HeLa cell extract. A model is proposed in which unscheduled or aberrant DNA replication is a critical step in the expansion mutation.


Assuntos
DNA Super-Helicoidal/química , Repetições de Microssatélites , Conformação de Ácido Nucleico , Plasmídeos/genética , Ataxias Espinocerebelares/genética , Composição de Bases , Pareamento de Bases , Replicação do DNA , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/ultraestrutura , Eletroforese em Gel Bidimensional , Células HeLa , Humanos , Microscopia de Força Atômica , Modelos Teóricos , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Plasmídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA