Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell Rep Med ; 5(5): 101521, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38653245

RESUMO

BCR::ABL1-independent pathways contribute to primary resistance to tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) and play a role in leukemic stem cell persistence. Here, we perform ex vivo drug screening of CML CD34+ leukemic stem/progenitor cells using 100 single drugs and TKI-drug combinations and identify sensitivities to Wee1, MDM2, and BCL2 inhibitors. These agents effectively inhibit primitive CD34+CD38- CML cells and demonstrate potent synergies when combined with TKIs. Flow-cytometry-based drug screening identifies mepacrine to induce differentiation of CD34+CD38- cells. We employ genome-wide CRISPR-Cas9 screening for six drugs, and mediator complex, apoptosis, and erythroid-lineage-related genes are identified as key resistance hits for TKIs, whereas the Wee1 inhibitor AZD1775 and mepacrine exhibit distinct resistance profiles. KCTD5, a consistent TKI-resistance-conferring gene, is found to mediate TKI-induced BCR::ABL1 ubiquitination. In summary, we delineate potential mechanisms for primary TKI resistance and non-BCR::ABL1-targeting drugs, offering insights for optimizing CML treatment.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Inibidores de Proteínas Quinases , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Sistemas CRISPR-Cas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-abl/metabolismo , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Linhagem Celular Tumoral
2.
Biomed Pharmacother ; 173: 116397, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479181

RESUMO

Angiosarcoma is a rare soft tissue sarcoma originating from endothelial cells. Given that current treatments for advanced disease have shown limited efficacy, alternative therapies need to be identified. In rare diseases, patient-derived cell models are crucial for screening anti-tumour activity. In this study, cell line models were characterised in 2D and 3D cultures. The cell lines' growth, migration and invasion capabilities were explored, confirming them as useful tools for preclinical angiosarcoma studies. By screening a drug library, we identified potentially effective compounds: 8-amino adenosine impacted cell growth and inhibited migration and invasion at considerably low concentrations as a single agent. No synergistic effect was detected when combining with paclitaxel, gemcitabine or doxorubicin. These results suggest that this compound could be a potentially useful drug in the treatment of AGS.


Assuntos
Hemangiossarcoma , Sarcoma , Humanos , Hemangiossarcoma/tratamento farmacológico , Células Endoteliais/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sarcoma/tratamento farmacológico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico
3.
Nat Protoc ; 19(1): 60-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996540

RESUMO

Most patients with advanced malignancies are treated with severely toxic, first-line chemotherapies. Personalized treatment strategies have led to improved patient outcomes and could replace one-size-fits-all therapies, yet they need to be tailored by testing of a range of targeted drugs in primary patient cells. Most functional precision medicine studies use simple drug-response metrics, which cannot quantify the selective effects of drugs (i.e., the differential responses of cancer cells and normal cells). We developed a computational method for selective drug-sensitivity scoring (DSS), which enables normalization of the individual patient's responses against normal cell responses. The selective response scoring uses the inhibition of noncancerous cells as a proxy for potential drug toxicity, which can in turn be used to identify effective and safer treatment options. Here, we explain how to apply the selective DSS calculation for guiding precision medicine in patients with leukemia treated across three cancer centers in Europe and the USA; the generic methods are also widely applicable to other malignancies that are amenable to drug testing. The open-source and extendable R-codes provide a robust means to tailor personalized treatment strategies on the basis of increasingly available ex vivo drug-testing data from patients in real-world and clinical trial settings. We also make available drug-response profiles to 527 anticancer compounds tested in 10 healthy bone marrow samples as reference data for selective scoring and de-prioritization of drugs that show broadly toxic effects. The procedure takes <60 min and requires basic skills in R.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Medicina de Precisão/métodos
4.
Aging Cell ; 22(11): e13944, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858982

RESUMO

Drug repositioning strategy represents a valid tool to accelerate the pharmacological development through the identification of new applications for already existing compounds. In this view, we aimed at discovering molecules able to trigger telomere-localized DNA damage and tumor cell death. By applying an automated high-content spinning-disk microscopy, we performed a screening aimed at identifying, on a library of 527 drugs, molecules able to negatively affect the expression of TRF2, a key protein in telomere maintenance. FK866, resulting from the screening as the best candidate hit, was then validated at biochemical and molecular levels and the mechanism underlying its activity in telomere deprotection was elucidated both in vitro and in vivo. The results of this study allow us to discover a novel role of FK866 in promoting, through the production of reactive oxygen species, telomere loss and deprotection, two events leading to an accumulation of DNA damage and tumor cell death. The ability of FK866 to induce telomere damage and apoptosis was also demonstrated in advanced preclinical models evidencing the antitumoral activity of FK866 in triple-negative breast cancer-a particularly aggressive breast cancer subtype still orphan of targeted therapies and characterized by high expression levels of both NAMPT and TRF2. Overall, our findings pave the way to the development of novel anticancer strategies to counteract triple-negative breast cancer, based on the use of telomere deprotecting agents, including NAMPT inhibitors, that would rapidly progress from bench to bedside.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Reposicionamento de Medicamentos , Morte Celular , Apoptose , Telômero , Proteína 2 de Ligação a Repetições Teloméricas/genética , Linhagem Celular Tumoral
5.
Eur Urol Focus ; 9(5): 751-759, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36933996

RESUMO

BACKGROUND: Immune checkpoint inhibitors and antiangiogenic agents are used for first-line treatment of advanced papillary renal cell carcinoma (pRCC) but pRCC response rates to these therapies are low. OBJECTIVE: To generate and characterise a functional ex vivo model to identify novel treatment options in advanced pRCC. DESIGN, SETTING, AND PARTICIPANTS: We established patient-derived cell cultures (PDCs) from seven pRCC samples from patients and characterised them via genomic analysis and drug profiling. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Comprehensive molecular characterisation in terms of copy number analysis and whole-exome sequencing confirmed the concordance of pRCC PDCs with the original tumours. We evaluated their sensitivity to novel drugs by generating drug scores for each PDC. RESULTS AND LIMITATIONS: PDCs confirmed pRCC-specific copy number variations such as gains in chromosomes 7, 16, and 17. Whole-exome sequencing revealed that PDCs retained mutations in pRCC-specific driver genes. We performed drug screening with 526 novel and oncological compounds. Whereas exposure to conventional drugs showed low efficacy, the results highlighted EGFR and BCL2 family inhibition as the most effective targets in our pRCC PDCs. CONCLUSIONS: High-throughput drug testing on newly established pRCC PDCs revealed that inhibition of EGFR and BCL2 family members could be a therapeutic strategy in pRCC. PATIENT SUMMARY: We used a new approach to generate patient-derived cells from a specific type of kidney cancer. We showed that these cells have the same genetic background as the original tumour and can be used as models to study novel treatment options for this type of kidney cancer.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Variações do Número de Cópias de DNA , Receptores ErbB/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
6.
SLAS Discov ; 28(4): 138-148, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934951

RESUMO

Central to the success of functional precision medicine of solid tumors is to perform drug testing of patient-derived cancer cells (PDCs) in tumor-mimicking ex vivo conditions. While high throughput (HT) drug screening methods have been well-established for cells cultured in two-dimensional (2D) format, this approach may have limited value in predicting clinical responses. Here, we describe the results of the optimization of drug sensitivity and resistance testing (DSRT) in three-dimensional (3D) growth supporting matrices in a HT mode (3D-DSRT) using the hepatocyte cell line (HepG2) as an example. Supporting matrices included widely used animal-derived Matrigel and cellulose-based hydrogel, GrowDex, which has earlier been shown to support 3D growth of cell lines and stem cells. Further, the sensitivity of ovarian cancer PDCs, from two patients included in the functional precision medicine study, was tested for 52 drugs in 5 different concentrations using 3D-DSRT. Shortly, in the optimized protocol, the PDCs are embedded with matrices and seeded to 384-well plates to allow the formation of the spheroids prior to the addition of drugs in nanoliter volumes with acoustic dispenser. The sensitivity of spheroids to drug treatments is measured with cell viability readout (here, 72 h after addition of drugs). The quality control and data analysis are performed with openly available Breeze software. We show the usability of both matrices in established 3D-DSRT, and report 2D vs 3D growth condition dependent differences in sensitivities of ovarian cancer PDCs to MEK-inhibitors and cytotoxic drugs. This study provides a proof-of-concept for robust and fast screening of drug sensitivities of PDCs in 3D-DSRT, which is important not only for drug discovery but also for personalized ex vivo drug testing in functional precision medicine studies. These findings suggest that comparing results of 2D- and 3D-DSRT is essential for understanding drug mechanisms and for selecting the most effective treatment for the patient.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Animais , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Descoberta de Drogas
7.
Nucleic Acids Res ; 51(4): 1687-1706, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36727434

RESUMO

Positive transcription elongation factor b (P-TEFb) is the crucial player in RNA polymerase II (Pol II) pause release that has emerged as a promising target in cancer. Because single-agent therapy may fail to deliver durable clinical response, targeting of P-TEFb shall benefit when deployed as a combination therapy. We screened a comprehensive oncology library and identified clinically relevant antimetabolites and Mouse double minute 2 homolog (MDM2) inhibitors as top compounds eliciting p53-dependent death of colorectal cancer cells in synergy with selective inhibitors of P-TEFb. While the targeting of P-TEFb augments apoptosis by anti-metabolite 5-fluorouracil, it switches the fate of cancer cells by the non-genotoxic MDM2 inhibitor Nutlin-3a from cell-cycle arrest to apoptosis. Mechanistically, the fate switching is enabled by the induction of p53-dependent pro-apoptotic genes and repression of P-TEFb-dependent pro-survival genes of the PI3K-AKT signaling cascade, which stimulates caspase 9 and intrinsic apoptosis pathway in BAX/BAK-dependent manner. Finally, combination treatments trigger apoptosis of cancer cell spheroids. Together, co-targeting of P-TEFb and suppressors of intrinsic apoptosis could become a viable strategy to eliminate cancer cells.


Assuntos
Apoptose , Fator B de Elongação Transcricional Positiva , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Linhagem Celular Tumoral , Sobrevivência Celular , Fosfatidilinositol 3-Quinases/metabolismo , Fator B de Elongação Transcricional Positiva/antagonistas & inibidores , Fator B de Elongação Transcricional Positiva/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína Supressora de Tumor p53/genética , Humanos
8.
SLAS Discov ; 28(2): 36-41, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36464160

RESUMO

Establishment of drug testing of patient-derived cancer cells (PDCs) in physiologically relevant 3-dimensional (3D) culture is central for drug discovery and cancer research, as well as for functional precision medicine. Here, we describe the detailed protocol allowing the 3D drug testing of PDCs - or any type of cells of interest - in Matrigel in 384-well plate format using automation. We also provide an alternative protocol, which does not require supporting matrices. The cancer tissue is obtained directly from clinics (after surgery or biopsy) and processed into single cell suspension. Systematic drug sensitivity and resistance testing (DSRT) is carried out on the PDCs directly after cancer cell isolation from tissue or on cells expanded for a few passages. In the 3D-DSRT assay, the PDCs are plated in 384-well plates in Matrigel, grown as spheroids, and treated with compounds of interest for 72 h. The cell viability is directly measured using a luminescence-based assay. Alternatively, prior to the cell viability measurement, drug-treated cells can be directly subjected to automated high-content bright field imaging or stained for fluorescence (live) cell microscopy for further image analysis. This is followed by the quality control and data analysis. The 3D-DSRT can be performed within a 1-3-week timeframe of the clinical sampling of cancer tissue, depending on the amount of the obtained tissue, growth rate of cancer cells, and the number of drugs being tested. The 3D-DSRT method can be flexibly modified, e.g., to be carried out with or without supporting matrices with U-bottom 384-well plates when appropriate for the PDCs or other cell models used.


Assuntos
Descoberta de Drogas , Neoplasias , Humanos , Ensaios de Seleção de Medicamentos Antitumorais , Descoberta de Drogas/métodos , Neoplasias/tratamento farmacológico , Colágeno/farmacologia
9.
Front Oncol ; 12: 954430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081565

RESUMO

Objective: A major challenge in the treatment of platinum-resistant high-grade serous ovarian cancer (HGSOC) is lack of effective therapies. Much of ongoing research on drug candidates relies on HGSOC cell lines that are poorly documented. The goal of this study was to screen for effective, state-of-the-art drug candidates using primary HGSOC cells. In addition, our aim was to dissect the inhibitory activities of Wee1 inhibitor adavosertib on primary and conventional HGSOC cell lines. Methods: A comprehensive drug sensitivity and resistance testing (DSRT) on 306 drug compounds was performed on three patient-derived genetically unique HGSOC cell lines and two commonly used ovarian cancer cell lines. The effect of adavosertib on the cell lines was tested in several assays, including cell-cycle analysis, apoptosis induction, proliferation, wound healing, DNA damage, and effect on nuclear integrity. Results: Several compounds exerted cytotoxic activity toward all cell lines, when tested in both adherent and spheroid conditions. In further cytotoxicity tests, adavosertib exerted the most consistent cytotoxic activity. Adavosertib affected cell-cycle control in patient-derived and conventional HGSOC cells, inducing G2/M accumulation and reducing cyclin B1 levels. It induced apoptosis and inhibited proliferation and migration in all cell lines. Furthermore, the DNA damage marker γH2AX and the number of abnormal cell nuclei were clearly increased following adavosertib treatment. Based on the homologous recombination (HR) signature and functional HR assays of the cell lines, the effects of adavosertib were independent of the cells' HR status. Conclusion: Our study indicates that Wee1 inhibitor adavosertib affects several critical functions related to proliferation, cell cycle and division, apoptosis, and invasion. Importantly, the effects are consistent in all tested cell lines, including primary HGSOC cells, and independent of the HR status of the cells. Wee1 inhibition may thus provide treatment opportunities especially for patients, whose cancer has acquired resistance to platinum-based chemotherapy or PARP inhibitors.

10.
Transl Oncol ; 26: 101535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115076

RESUMO

Serum-free culturing of patient-derived glioblastoma biopsies enrich for glioblastoma stem cells (GSCs) and is recognized as a disease-relevant model system in glioblastoma (GBM). We hypothesized that the temozolomide (TMZ) drug sensitivity of patient-derived GSC cultures correlates to clinical sensitivity patterns and has clinical predictive value in a cohort of GBM patients. To this aim, we established 51 individual GSC cultures from surgical biopsies from both treatment-naïve primary and pretreated recurrent GBM patients. The cultures were evaluated for sensitivity to TMZ over a dosing range achievable in normal clinical practice. Drug efficacy was quantified by the drug sensitivity score. MGMT-methylation status was investigated by pyrosequencing. Correlative, contingency, and survival analyses were performed for associations between experimental and clinical data. We found a heterogeneous response to temozolomide in the GSC culture cohort. There were significant differences in the sensitivity to TMZ between the newly diagnosed and the TMZ-treated recurrent disease (p <0.01). There was a moderate correlation between MGMT-status and sensitivity to TMZ (r=0.459, p=0.0009). The relationship between MGMT status and TMZ efficacy was statistically significant on multivariate analyses (p=0.0051). We found a predictive value of TMZ sensitivity in individual GSC cultures to patient survival (p=0.0089). We conclude that GSC-enriched cultures hold clinical and translational relevance by their ability to reflect the clinical heterogeneity in TMZ-sensitivity, substantiate the association between TMZ-sensitivity and MGMT-promotor methylation status and appear to have a stronger predictive value than MGMT-promotor methylation on clinical responses to TMZ.

11.
Hemasphere ; 6(3): e701, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35233509

RESUMO

In adult patients, the treatment outcome of acute lymphoblastic leukemia (ALL) remains suboptimal. Here, we used an ex vivo drug testing platform and comprehensive molecular profiling to discover new drug candidates for B-ALL. We analyzed sensitivity of 18 primary B-ALL adult patient samples to 64 drugs in a physiological concentration range. Whole-transcriptome sequencing and publicly available expression data were used to examine gene expression biomarkers for observed drug responses. Apoptotic modulators targeting BCL2 and MDM2 were highly effective. Philadelphia chromosome-negative (Ph-) samples were sensitive to both BCL2/BCL-W/BCL-XL-targeting agent navitoclax and BCL2-selective venetoclax, whereas Ph-positive (Ph+) samples were more sensitive to navitoclax. Expression of BCL2 was downregulated and BCL-W and BCL-XL upregulated in Ph+ ALL compared with Ph- samples, providing elucidation for the observed difference in drug responses. A majority of the samples were sensitive to MDM2 inhibitor idasanutlin. The regulatory protein MDM2 suppresses the function of tumor suppressor p53, leading to impaired apoptosis. In B-ALL, the expression of MDM2 was increased compared with other hematological malignancies. In B-ALL cell lines, a combination of BCL2 and MDM2 inhibitor was synergistic. In summary, antiapoptotic proteins including BCL2 and MDM2 comprise promising targets for future drug studies in B-ALL.

12.
Cancer Discov ; 12(2): 388-401, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789538

RESUMO

We generated ex vivo drug-response and multiomics profiling data for a prospective series of 252 samples from 186 patients with acute myeloid leukemia (AML). A functional precision medicine tumor board (FPMTB) integrated clinical, molecular, and functional data for application in clinical treatment decisions. Actionable drugs were found for 97% of patients with AML, and the recommendations were clinically implemented in 37 relapsed or refractory patients. We report a 59% objective response rate for the individually tailored therapies, including 13 complete responses, as well as bridging five patients with AML to allogeneic hematopoietic stem cell transplantation. Data integration across all cases enabled the identification of drug response biomarkers, such as the association of IL15 overexpression with resistance to FLT3 inhibitors. Integration of molecular profiling and large-scale drug response data across many patients will enable continuous improvement of the FPMTB recommendations, providing a paradigm for individualized implementation of functional precision cancer medicine. SIGNIFICANCE: Oncogenomics data can guide clinical treatment decisions, but often such data are neither actionable nor predictive. Functional ex vivo drug testing contributes significant additional, clinically actionable therapeutic insights for individual patients with AML. Such data can be generated in four days, enabling rapid translation through FPMTB.See related commentary by Letai, p. 290.This article is highlighted in the In This Issue feature, p. 275.


Assuntos
Técnicas de Apoio para a Decisão , Leucemia Mieloide Aguda/tratamento farmacológico , Equipe de Assistência ao Paciente , Medicina de Precisão , Feminino , Finlândia , Humanos , Leucemia Mieloide Aguda/mortalidade , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Análise de Sobrevida
13.
Cell Rep Med ; 2(8): 100373, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34467250

RESUMO

Functional profiling of a cancer patient's tumor cells holds potential to tailor personalized cancer treatment. Here, we report the utility of fresh uncultured tumor-derived EpCAM+ epithelial cells (FUTCs) for ex vivo drug-response interrogation. Analysis of murine Kras mutant FUTCs demonstrates pharmacological and adaptive signaling profiles comparable to subtype-matched cultured cells. By applying FUTC profiling on non-small-cell lung cancer patient samples, we report robust drug-response data in 19 of 20 cases, with cells exhibiting targeted drug sensitivities corresponding to their oncogenic drivers. In one of these cases, an EGFR mutant lung adenocarcinoma patient refractory to osimertinib, FUTC profiling is used to guide compassionate treatment. FUTC profiling identifies selective sensitivity to disulfiram and the combination of carboplatin plus etoposide, and the patient receives substantial clinical benefit from treatment with these agents. We conclude that FUTC profiling provides a robust, rapid, and actionable assessment of personalized cancer treatment options.


Assuntos
Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Medicina de Precisão , Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/patologia , Adulto , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/patologia , Reprogramação Celular , Células Epiteliais/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais , Células Tumorais Cultivadas
14.
Cancers (Basel) ; 13(12)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200751

RESUMO

Deregulated miRNA expression has been suggested in several stages of breast cancer pathogenesis. We have studied the miR-30 family, in particular miR-30d, in relation to breast cancer patient survival and treatment outcomes. With tumor specimens from 1238 breast cancer patients, we analyzed the association of miR-30d expression with tumor characteristics with the 5-year occurrence of breast cancer-specific death or distant metastasis (BDDM), and with 10-year breast cancer survival (BCS). We conducted a two-stage drug-screen to investigate the impact of miR-30 family members (miR-30a-30e) on sensitivity to doxorubicin and lapatinib in six breast cancer cell lines HCC1937, HCC1954, MDA-MB-361, MCF7, MDA-MB-436 and CAL-120, using drug sensitivity scores (DSS) to compare the miR-30 family mimics to their specific inhibitors. The study was complemented with Ingenuity Pathway Analysis (IPA) with the METABRIC data. We found that while high miR-30d expression is typical for aggressive tumors, it predicts better metastasis-free (pBDDM = 0.035, HR = 0.63, 95% CI = 0.4-0.9) and breast cancer-specific survival (pBCS = 0.018, HR = 0.61, 95% CI = 0.4-0.9), especially in HER2-positive (pBDDM = 0.0009), ER-negative (pBDDM = 0.003), p53-positive (pBDDM = 0.011), and highly proliferating (pBDDM = 0.0004) subgroups, and after adjuvant chemotherapy (pBDDM = 0.035). MiR-30d predicted survival independently of standard prognostic markers (pBDDM = 0.0004). In the drug-screening test, the miR-30 family sensitized the HER2-positive HCC1954 cell line to lapatinib (p < 10-2) and HCC1937, MDA-MB-361, MDA-MB-436 and CAL120 to doxorubicin (p < 10-4) with an opposite impact on MCF7. According to the pathway analysis, the miR-30 family has a suppressive effect on cell motility and metastasis in breast cancer. Our results suggest prognostic and predictive potential for the miR-30 family, which warrants further investigation.

15.
NPJ Precis Oncol ; 5(1): 71, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34302041

RESUMO

The FDA recently approved eight targeted therapies for acute myeloid leukemia (AML), including the BCL-2 inhibitor venetoclax. Maximizing efficacy of these treatments requires refining patient selection. To this end, we analyzed two recent AML studies profiling the gene expression and ex vivo drug response of primary patient samples. We find that ex vivo samples often exhibit a general sensitivity to (any) drug exposure, independent of drug target. We observe that this "general response across drugs" (GRD) is associated with FLT3-ITD mutations, clinical response to standard induction chemotherapy, and overall survival. Further, incorporating GRD into expression-based regression models trained on one of the studies improved their performance in predicting ex vivo response in the second study, thus signifying its relevance to precision oncology efforts. We find that venetoclax response is independent of GRD but instead show that it is linked to expression of monocyte-associated genes by developing and applying a multi-source Bayesian regression approach. The method shares information across studies to robustly identify biomarkers of drug response and is broadly applicable in integrative analyses.

16.
Sci Rep ; 11(1): 14755, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285300

RESUMO

Conventional chemotherapeutic agents are nonselective, often resulting in severe side effects and the development of resistance. Therefore, new molecular-targeted therapies are urgently needed to be integrated into existing treatment regimens. Here, we performed a high-throughput compound screen to identify a synergistic interaction between ionizing radiation and 396 anticancer compounds. The assay was run using five human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC) cell lines cultured on the human tumor-derived matrix Myogel. Our screen identified several compounds with strong synergistic and antagonistic effects, which we further investigated using multiple irradiation doses. Navitoclax, which emerged as the most promising radiosensitizer, exhibited synergy with irradiation regardless of the p53 mutation status in all 13 HNSCC cell lines. We performed a live cell apoptosis assay for two representative HNSCC cell lines to examine the effects of navitoclax and irradiation. As a single agent, navitoclax reduced proliferation and induced apoptosis in a dose-dependent manner, whereas the navitoclax-irradiation combination arrested cell cycle progression and resulted in substantially elevated apoptosis. Overall, we demonstrated that combining navitoclax with irradiation resulted in synergistic in vitro antitumor effects in HNSCC cell lines, possibly indicating the therapeutic potential for HNSCC patients.


Assuntos
Compostos de Anilina/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Radiação Ionizante , Sulfonamidas/farmacologia , Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Ensaios de Triagem em Larga Escala , Papillomavirus Humano 16/fisiologia , Humanos , Mutação , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Sulfonamidas/uso terapêutico , Proteína Supressora de Tumor p53/genética
17.
Leukemia ; 35(7): 1964-1975, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33168949

RESUMO

The oncogenic protein Bcr-Abl has two major isoforms, p190Bcr-Abl and p210Bcr-Abl. While p210Bcr-Abl is the hallmark of chronic myeloid leukemia (CML), p190Bcr-Abl occurs in the majority of Philadelphia-positive acute lymphoblastic leukemia (Ph + ALL) patients. In CML, p190Bcr-Abl occurs in a minority of patients associating with distinct hematological features and inferior outcomes, yet the pathogenic role of p190Bcr-Abl and potential targeting therapies are largely uncharacterized. We employed next generation sequencing, phospho-proteomic profiling, and drug sensitivity testing to characterize p190Bcr-Abl in CML and hematopoietic progenitor cell line models (Ba/f3 and HPC-LSK). p190Bcr-Abl CML patients demonstrated poor response to imatinib and frequent mutations in epigenetic modifiers genes. In contrast with p210Bcr-Abl, p190Bcr-Abl exhibited specific transcriptional upregulation of interferon, interleukin-1 receptor, and P53 signaling pathways, associated with hyperphosphorylation of relevant signaling molecules including JAK1/STAT1 and PAK1 in addition to Src hyperphosphorylation. Comparable to p190Bcr-Abl CML patients, p190Bcr-Abl cell lines demonstrated similar transcriptional and phospho-signaling signatures. With the drug sensitivity screening we identified targeted drugs with specific activity in p190Bcr-Abl cell lines including IAP-, PAK1-, and Src inhibitors and glucocorticoids. Our results provide novel insights into the mechanisms underlying the distinct features of p190Bcr-Abl CML and promising therapeutic targets for this high-risk patient group.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Transdução de Sinais/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica/métodos , Glucocorticoides/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Oncogenes/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteômica/métodos , Transcrição Gênica/genética , Regulação para Cima/genética
19.
J Pathol ; 250(2): 159-169, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31595974

RESUMO

Poor chemotherapy response remains a major treatment challenge for high-grade serous ovarian cancer (HGSC). Cancer stem cells are the major contributors to relapse and treatment failure as they can survive conventional therapy. Our objectives were to characterise stemness features in primary patient-derived cell lines, correlate stemness markers with clinical outcome and test the response of our cells to both conventional and exploratory drugs. Tissue and ascites samples, treatment-naive and/or after neoadjuvant chemotherapy, were prospectively collected. Primary cancer cells, cultured under conditions favouring either adherent or spheroid growth, were tested for stemness markers; the same markers were analysed in tissue and correlated with chemotherapy response and survival. Drug sensitivity and resistance testing was performed with 306 oncology compounds. Spheroid growth condition HGSC cells showed increased stemness marker expression (including aldehyde dehydrogenase isoform I; ALDH1A1) as compared with adherent growth condition cells, and increased resistance to platinum and taxane. A set of eight stemness markers separated treatment-naive tumours into two clusters and identified a distinct subgroup of HGSC with enriched stemness features. Expression of ALDH1A1, but not most other stemness markers, was increased after neoadjuvant chemotherapy and its expression in treatment-naive tumours correlated with chemoresistance and reduced survival. In drug sensitivity and resistance testing, five compounds, including two PI3K-mTOR inhibitors, demonstrated significant activity in both cell culture conditions. Thirteen compounds, including EGFR, PI3K-mTOR and aurora kinase inhibitors, were more toxic to spheroid cells than adherent cells. Our results identify stemness markers in HGSC that are associated with a decreased response to conventional chemotherapy and reduced survival if expressed by treatment-naive tumours. EGFR, mTOR-PI3K and aurora kinase inhibitors are candidates for targeting this cell population. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Antineoplásicos/farmacologia , Cistadenocarcinoma Seroso/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Retinal Desidrogenase/metabolismo , Aurora Quinases/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Quimioterapia Adjuvante/métodos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Terapia de Alvo Molecular/métodos , Gradação de Tumores , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Prognóstico , Esferoides Celulares/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Células Tumorais Cultivadas/efeitos dos fármacos
20.
Mol Cancer Ther ; 18(10): 1863-1874, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31320402

RESUMO

Most non-small cell lung cancers (NSCLC) contain nontargetable mutations, including KRAS, TP53, or STK11/LKB1 alterations. By coupling ex vivo drug sensitivity profiling with in vivo drug response studies, we aimed to identify drug vulnerabilities for these NSCLC subtypes. Primary adenosquamous carcinoma (ASC) or adenocarcinoma (AC) cultures were established from KrasG12D/+;Lkb1fl/fl (KL) tumors or AC cultures from KrasG12D/+;p53fl/fl (KP) tumors. Although p53-null cells readily propagated as conventional cultures, Lkb1-null cells required conditional reprograming for establishment. Drug response profiling revealed short-term response to MEK inhibition, yet long-term clonogenic assays demonstrated resistance, associated with sustained or adaptive activation of receptor tyrosine kinases (RTK): activation of ERBBs in KL cultures, or FGFR in AC cultures. Furthermore, pan-ERBB inhibition reduced the clonogenicity of KL cultures, which was exacerbated by combinatorial MEK inhibition, whereas combinatorial MEK and FGFR inhibition suppressed clonogenicity of AC cultures. Importantly, in vivo studies confirmed KL-selective sensitivity to pan-ERBB inhibition, which correlated with high ERBB ligand expression and activation of ERBB receptors, implying that ERBB network activity may serve as a predictive biomarker of drug response. Interestingly, in human NSCLCs, phosphorylation of EGFR or ERBB3 was frequently detected in ASCs and squamous cell carcinomas. We conclude that analysis of in situ ERBB signaling networks in conjunction with ex vivo drug response profiling and biochemical dissection of adaptive RTK activities may serve as a valid diagnostic approach to identify tumors sensitive to ERBB network inhibition.


Assuntos
Receptores ErbB/antagonistas & inibidores , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Ativação Enzimática , Receptores ErbB/metabolismo , Genótipo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA