Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 824746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392090

RESUMO

The origin of the impaired CD4 T-cell response and immunodeficiency of HIV-infected patients is still only partially understood. We recently demonstrated that PLA2G1B phospholipase synergizes with the HIV gp41 envelope protein in HIV viremic plasma to induce large abnormal membrane microdomains (aMMDs) that trap and inactivate physiological receptors, such as those for IL-7. However, the mechanism of regulation of PLA2G1B activity by the cofactor gp41 is not known. Here, we developed an assay to directly follow PLA2G1B enzymatic activity on CD4 T-cell membranes. We demonstrated that gp41 directly binds to PLA2G1B and increases PLA2G1B enzymatic activity on CD4 membrane. Furthermore, we show that the conserved 3S sequence of gp41, known to bind to the innate sensor gC1qR, increases PLA2G1B activity in a gC1qR-dependent manner using gC1qR KO cells. The critical role of the 3S motif and gC1qR in the inhibition of CD4 T-cell function by the PLA2G1B/cofactor system in HIV-infected patients led us to screen additional microbial proteins for 3S-like motifs and to study other proteins known to bind to the gC1qR to further investigate the role of the PLA2G1B/cofactor system in other infectious diseases and carcinogenesis. We have thus extended the PLA2G1B/cofactor system to HCV and Staphylococcus aureus infections and additional pathologies where microbial proteins with 3S-like motifs also increase PLA2G1B enzymatic activity. Notably, the bacteria Porphyromonas gingivalis, which is associated with pancreatic ductal adenocarcinoma (PDAC), encodes such a cofactor protein and increased PLA2G1B activity in PDAC patient plasma inhibits the CD4 response to IL-7. Our findings identify PLA2G1B/cofactor system as a CD4 T-cell inhibitor. It involves the gC1qR and disease-specific cofactors which are gC1qR-binding proteins that can contain 3S-like motifs. This mechanism involved in HIV-1 immunodeficiency could play a role in pancreatic cancer and several other diseases. These observations suggest that the PLA2G1B/cofactor system is a general CD4 T-cell inhibitor and pave the way for further studies to better understand the role of CD4 T-cell anergy in infectious diseases and tumor escape.


Assuntos
Linfócitos T CD4-Positivos , Anergia Clonal , Fosfolipases A2 do Grupo IB , Infecções por HIV , Glicoproteínas de Membrana , Receptores de Complemento , Linfócitos T CD4-Positivos/metabolismo , Proteínas de Transporte/metabolismo , Fosfolipases A2 do Grupo IB/metabolismo , Humanos , Interleucina-7/metabolismo , Glicoproteínas de Membrana/metabolismo , Ligação Proteica , Receptores de Complemento/metabolismo
2.
J Infect Dis ; 210(2): 214-23, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24493823

RESUMO

Influenza A virus triggers a contagious respiratory disease that can cause considerable morbidity and mortality. Using an in vitro approach, we previously demonstrated that the pattern recognition receptor retinoic acid-inducible gene I (RIG-I) plays a key role in influenza A virus-mediated immune response. However, the importance of RIG-I signaling in vivo has not been thoroughly examined, because of the lack of an appropriate mouse models. To circumvent this issue, we generated a new transgenic mouse overexpressing LGP2 (hereafter, "LGP2 TG mice"), a major regulator of the RIG-I signaling pathway. The time course of several parameters was compared in infected wild-type and LGP2 TG mice. We found that LGP2 TG mice displayed significantly reduced inflammatory mediators and a lower leukocyte infiltration into the bronchoalveolar airspace. More importantly, LGP2 TG mice had a significant survival advantage. Hence, our in vivo study reveals that LGP2 is a major downregulator of the influenza A virus-triggered detrimental inflammatory response.


Assuntos
Interações Hospedeiro-Patógeno , Vírus da Influenza A/fisiologia , RNA Helicases/metabolismo , Animais , Proteína DEAD-box 58 , RNA Helicases DEAD-box/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Mediadores da Inflamação/análise , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Transdução de Sinais , Análise de Sobrevida
3.
PLoS Pathog ; 9(4): e1003256, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23592984

RESUMO

Influenza A virus (IAV) triggers a contagious and potentially lethal respiratory disease. A protective IL-1ß response is mediated by innate receptors in macrophages and lung epithelial cells. NLRP3 is crucial in macrophages; however, which sensors elicit IL-1ß secretion in lung epithelial cells remains undetermined. Here, we describe for the first time the relative roles of the host innate receptors RIG-I (DDX58), TLR3, and NLRP3 in the IL-1ß response to IAV in primary lung epithelial cells. To activate IL-1ß secretion, these cells employ partially redundant recognition mechanisms that differ from those described in macrophages. RIG-I had the strongest effect through a MAVS/TRIM25/Riplet-dependent type I IFN signaling pathway upstream of TLR3 and NLRP3. Notably, RIG-I also activated the inflammasome through interaction with caspase 1 and ASC in primary lung epithelial cells. Thus, NS1, an influenza virulence factor that inhibits the RIG-I/type I IFN pathway, strongly modulated the IL-1ß response in lung epithelial cells and in ferrets. The NS1 protein derived from a highly pathogenic strain resulted in increased interaction with RIG-I and inhibited type I IFN and IL-1ß responses compared to the least pathogenic virus strains. These findings demonstrate that in IAV-infected lung epithelial cells RIG-I activates the inflammasome both directly and through a type I IFN positive feedback loop.


Assuntos
Proteínas de Transporte/metabolismo , RNA Helicases DEAD-box/metabolismo , Inflamassomos/metabolismo , Vírus da Influenza A Subtipo H1N1 , Interferon beta/metabolismo , Receptor 3 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Caspase 1/genética , Caspase 1/metabolismo , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células Epiteliais/metabolismo , Furões , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Pulmão/metabolismo , Pulmão/virologia , Macrófagos/imunologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR , Interferência de RNA , Receptores Imunológicos , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismo
4.
Int Rev Immunol ; 32(2): 157-208, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23570315

RESUMO

Since their discovery, innate immunity microbial sensors have been increasingly studied and shown to play a critical role in innate responses to microbes in several experimental in vitro, ex vivo, and animal models. However, their role in the human response to infection in natural conditions has just started to be deciphered, by means of clinical studies of primary immunodeficiencies and epidemiological genetic studies. Here, we summarize the major findings concerning the genetic diversity of the various families of microbial sensors in humans, and of other molecules involved in the signaling pathways they trigger. Specifically, we review the genetic associations, revealed by both clinical and epidemiological genetics studies, of microbial sensors from five different families: Toll-like receptors, C-type lectin receptors, NOD-like receptors, RIG-I-like receptors, and cytosolic DNA sensors. In particular, we consider the relationships between variation at the genes encoding these molecules and susceptibility to and the severity of infectious diseases and other clinical conditions associated with immune dysfunction, including autoimmunity, inflammation, allergy, and cancer. Despite the fact that the genetic links between innate immunity sensors and human disorders remain still limited, human genetics studies are increasingly improving our understanding of the genuine functions of microbial sensors and downstream signaling molecules in the natural setting.


Assuntos
Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Receptores de Reconhecimento de Padrão/genética , Animais , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Doenças do Sistema Imunitário/epidemiologia , Imunidade Inata/genética , Polimorfismo Genético , Receptores de Reconhecimento de Padrão/imunologia
5.
J Immunol ; 188(8): 3949-60, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22427645

RESUMO

Seasonal influenza outbreaks and recurrent influenza pandemics present major challenges to public health. By studying immunological responses to influenza in different host species, it may be possible to discover common mechanisms of susceptibility in response to various influenza strains. This could lead to novel therapeutic targets with wide clinical application. Using a mouse-adapted strain of influenza (A/HK/1/68-MA20 [H3N2]), we produced a mouse model of severe influenza that reproduces the hallmark high viral load and overexpression of cytokines associated with susceptibility to severe influenza in humans. We mapped genetic determinants of the host response using a panel of 29 closely related mouse strains (AcB/BcA panel of recombinant congenic strains) created from influenza-susceptible A/J and influenza-resistant C57BL/6J (B6) mice. Combined clinical quantitative trait loci (QTL) and lung expression QTL mapping identified candidate genes for two sex-specific QTL on chromosomes 2 and 17. The former includes the previously described Hc gene, a deficit of which is associated with the susceptibility phenotype in females. The latter includes the phospholipase gene Pla2g7 and Tnfrsf21, a member of the TNFR superfamily. Confirmation of the gene underlying the chromosome 17 QTL may reveal new strategies for influenza treatment.


Assuntos
Cromossomos de Mamíferos/genética , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/genética , Locos de Características Quantitativas , 1-Alquil-2-acetilglicerofosfocolina Esterase , Alelos , Animais , Mapeamento Cromossômico , Cromossomos de Mamíferos/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Genótipo , Especificidade de Hospedeiro , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Pulmão/imunologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Fenótipo , Fosfolipases A2/genética , Fosfolipases A2/imunologia , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Fatores Sexuais
6.
Am J Respir Cell Mol Biol ; 47(2): 149-57, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22383584

RESUMO

Mucins, the main glycoproteins present within mucus, modulate the rheologic properties of airways and participate in lung defense. They are thought to be able to trap and eliminate microorganisms from the lung. Among the mucins secreted in the lung, MUC5AC is the most prominent factor secreted by surface epithelial cells. Although much is known about the signaling pathways involved in the regulation of MUC5AC by host factors such as cytokines or proteases, less is known about the pathways triggered by microorganisms and, specifically, by influenza A virus (IAV). We therefore set up experiments to dissect the molecular mechanisms responsible for the potential modulation of MUC5AC by IAV. Using epithelial cells, C57/Bl6 mice, and IAV strains, we measured MUC5AC expression at the RNA and protein levels, specificity protein 1 (Sp1) activation, and protease activity. Intermediate molecular partners were confirmed using pharmacological inhibitors, blocking antibodies, and small interfering (si)RNAs. We showed in vitro and in vivo that IAV up-regulates epithelial cell-derived MUC5AC and Muc5ac expression in mice, both at transcriptional (through the induction of Sp1) and translational levels. In addition, we determined that this induction was dependent on a protease-epithelial growth factor receptor-extracellular regulated kinase-Sp1 signaling cascade, involving in particular the human airway trypsin. Our data point to MUC5AC as a potential modulatory mechanism by which the lung epithelia respond to IAV infection, and we dissect, for the first time to the best of our knowledge, the molecular partners involved. Future experiments using MUC5AC-targeted strategies should help further unravel the pathophysiological consequences of IAV-induced MUC5AC expression for lung homeostasis.


Assuntos
Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Vírus da Influenza A/metabolismo , Pulmão/metabolismo , Mucina-5AC/biossíntese , Peptídeo Hidrolases/genética , Fator de Transcrição Sp1/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteína ADAM17 , Animais , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Receptores ErbB/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Humanos , Influenza Humana/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucina-5AC/genética , Mucina-5AC/metabolismo , Peptídeo Hidrolases/metabolismo , Transdução de Sinais , Fator de Transcrição Sp1/genética , Tripsina/genética , Tripsina/metabolismo , Regulação para Cima , Replicação Viral/genética
7.
J Virol ; 85(13): 6657-68, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525357

RESUMO

The neurotropic rabies virus (RABV) has developed several evasive strategies, including immunoevasion, to successfully infect the nervous system (NS) and trigger a fatal encephalomyelitis. Here we show that expression of LGP2, a protein known as either a positive or negative regulator of the RIG-I-mediated innate immune response, is restricted in the NS. We used a new transgenic mouse model (LGP2 TG) overexpressing LGP2 to impair the innate immune response to RABV and thus revealed the role of the RIG-I-mediated innate immune response in RABV pathogenesis. After infection, LGP2 TG mice exhibited reduced expression of inflammatory/chemoattractive molecules, beta interferon (IFN-ß), and IFN-stimulated genes in their NS compared to wild-type (WT) mice, demonstrating the inhibitory function of LGP2 in the innate immune response to RABV. Surprisingly, LGP2 TG mice showed more viral clearance in the brain and lower morbidity than WT mice, indicating that the host innate immune response, paradoxically, favors RABV neuroinvasiveness and morbidity. LGP2 TG mice exhibited similar neutralizing antibodies and microglia activation to those of WT mice but showed a reduction of infiltrating CD4(+) T cells and less disappearance of infiltrating CD8(+) T cells. This occurred concomitantly with reduced neural expression of the IFN-inducible protein B7-H1, an immunoevasive protein involved in the elimination of infiltrated CD8(+) T cells. Our study shows that the host innate immune response favors the infiltration of T cells and, at the same time, promotes CD8(+) T cell elimination. Thus, to a certain extent, RABV exploits the innate immune response to develop its immunoevasive strategy.


Assuntos
Antígeno B7-1/metabolismo , Imunidade Inata , Glicoproteínas de Membrana/metabolismo , Peptídeos/metabolismo , RNA Helicases/metabolismo , Vírus da Raiva/imunologia , Vírus da Raiva/patogenicidade , Raiva/imunologia , Animais , Antígeno B7-1/genética , Antígeno B7-H1 , Encéfalo/imunologia , Encéfalo/virologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células NIH 3T3 , Neurônios/imunologia , Neurônios/virologia , Peptídeos/genética , RNA Helicases/genética , Raiva/virologia , Linfócitos T/imunologia
8.
PLoS Pathog ; 7(2): e1001284, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21379343

RESUMO

Cell-free HIV-1 virions are poor stimulators of type I interferon (IFN) production. We examined here how HIV-infected cells are recognized by plasmacytoid dendritic cells (pDCs) and by other cells. We show that infected lymphocytes are more potent inducers of IFN than virions. There are target cell-type differences in the recognition of infected lymphocytes. In primary pDCs and pDC-like cells, recognition occurs in large part through TLR7, as demonstrated by the use of inhibitors and by TLR7 silencing. Donor cells expressing replication-defective viruses, carrying mutated reverse transcriptase, integrase or nucleocapsid proteins induced IFN production by target cells as potently as wild-type virus. In contrast, Env-deleted or fusion defective HIV-1 mutants were less efficient, suggesting that in addition to TLR7, cytoplasmic cellular sensors may also mediate sensing of infected cells. Furthermore, in a model of TLR7-negative cells, we demonstrate that the IRF3 pathway, through a process requiring access of incoming viral material to the cytoplasm, allows sensing of HIV-infected lymphocytes. Therefore, detection of HIV-infected lymphocytes occurs through both endosomal and cytoplasmic pathways. Characterization of the mechanisms of innate recognition of HIV-infected cells allows a better understanding of the pathogenic and exacerbated immunologic events associated with HIV infection.


Assuntos
Células Dendríticas/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , Linfócitos/metabolismo , Linfócitos/virologia , Western Blotting , Células Cultivadas , Células Dendríticas/metabolismo , Células Dendríticas/virologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , HIV , Infecções por HIV/metabolismo , Soropositividade para HIV , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferon-alfa/metabolismo , Linfócitos/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Vírion/patogenicidade , Replicação Viral
9.
PLoS One ; 4(10): e7582, 2009 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-19859543

RESUMO

BACKGROUND: RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response. METHODOLOGY/PRINCIPAL FINDINGS: Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P(229)fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S(183)I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein. CONCLUSIONS/SIGNIFICANCE: Hence, this study characterized P(229)fs and S(183)I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.


Assuntos
Antivirais/química , RNA Helicases DEAD-box/genética , Sistema Imunitário , Polimorfismo Genético , Linhagem Celular , Proteína DEAD-box 58 , Dimerização , Variação Genética , Humanos , Imunidade Inata , Modelos Genéticos , Modelos Moleculares , Mutação de Sentido Incorreto , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Imunológicos , Transdução de Sinais
10.
J Immunol ; 180(4): 2034-8, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18250407

RESUMO

Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed at regulating such a response are unknown. In this study, we investigated the role of the eight "suppressor of cytokine signaling" (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1 to SOCS7, but not cytokine-inducible Src homology 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expressions are up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNalphabeta receptor (IFNAR)1, the viral sensors TLR3 and retinoic acid-inducible gene I (RIG-I) as well as the mitochondrial antiviral signaling protein (MAVS, a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TLR3-independent, RIG-I/MAVS/IFNAR1-dependent pathway. Importantly, by using vectors overexpressing SOCS1 and SOCS3 we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.


Assuntos
RNA Helicases DEAD-box/fisiologia , Imunidade Inata , Vírus da Influenza A Subtipo H3N2/imunologia , Receptor de Interferon alfa e beta/fisiologia , Transdução de Sinais/imunologia , Proteínas Supressoras da Sinalização de Citocina/fisiologia , Brônquios/citologia , Brônquios/imunologia , Brônquios/metabolismo , Brônquios/virologia , Linhagem Celular , Proteína DEAD-box 58 , Humanos , Receptores Imunológicos , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/biossíntese , Proteínas Supressoras da Sinalização de Citocina/genética , Receptor 3 Toll-Like/fisiologia , Regulação para Cima/imunologia
11.
J Immunol ; 178(6): 3368-72, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339430

RESUMO

Influenza A virus (IAV) triggers a contagious acute respiratory disease that causes considerable mortality annually. Recently, we established a role for the pattern-recognition TLR3 in the response of lung epithelial cells to IAV-derived dsRNA. However, additional nucleic acid-recognition proteins have lately been implicated as key viral sensors, including the RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene (MDA)-5. In this study, we investigated the respective role of TLR3 vs RIG-I/MDA-5 signaling in human respiratory epithelial cells infected by IAV using BEAS-2B cells transfected with vectors encoding either a dominant-negative form of TLR3 or of mitochondrial antiviral signaling protein (MAVS; a signaling intermediate of RIG-I and MDA-5), or with plasmids overexpressing functional RIG-I or MDA-5. We demonstrate that the sensing of IAV by TLR3 primarily regulates a proinflammatory response, whereas RIG-I (but not MDA-5) mediates both a type I IFN-dependent antiviral signaling and a proinflammatory response.


Assuntos
Células Epiteliais/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Receptores do Ácido Retinoico/imunologia , Transdução de Sinais/imunologia , Receptor 3 Toll-Like/imunologia , Linhagem Celular , RNA Helicases DEAD-box/imunologia , Células Epiteliais/virologia , Humanos , Inflamação/genética , Inflamação/imunologia , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/genética , Interferon Tipo I/imunologia , Helicase IFIH1 Induzida por Interferon , Proteínas Mitocondriais/imunologia , RNA Helicases , RNA de Cadeia Dupla/imunologia , RNA Viral/imunologia , Transdução de Sinais/genética , Receptor 3 Toll-Like/genética
12.
Int J Cancer ; 119(8): 1869-77, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16708391

RESUMO

Tumor development is a multistep process in which both genetic and epigenetic events cooperate for the emergence of a malignant clone with metastatic properties. The possibility that endogenous retroviruses promote the expansion of a neoplastic clone by subverting immunosurveillance has been proposed and recently demonstrated in the case of the B16 murine melanoma, which spontaneously express the melanoma-associated retrovirus (MelARV). Indeed, knocking down, by RNA interference, this endogenous retrovirus resulted in the rejection of the tumor cells in immunocompetent mice, without any alteration of their transformed phenotype. Here, we characterize the MelARV proviruses present in the B16 melanoma. Complete sequencing of the viral genomic RNA and characterization of the integration sites within both the B16 tumor cells and a subline selected in vivo for increased metastatic activity disclosed mobility of the element with new proviral insertions targeting critical genes and altering their transcriptional profile. The results show that MelARV can act both at the genetic level, inducing mutations by insertion, and at the epigenetic level, promoting immunosuppression of the host. These properties may as well be relevant to human tumors, such as germline tumors and melanoma, where endogenous retroviruses are active.


Assuntos
Retrovirus Endógenos/fisiologia , Melanoma/patologia , Melanoma/virologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Linhagem Celular Tumoral , Progressão da Doença , Expressão Gênica , Melanoma/complicações , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Transplante de Neoplasias , Fosfoproteínas/genética
13.
Int J Cancer ; 119(4): 815-22, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16550601

RESUMO

The theory of immunoediting postulates that tumor cells exhibit a reduced immunogenicity to escape eradication by the host immune system. It has been proposed that endogenous retroviruses--provided that they are active--could play a role in this process, via the immunosuppressive domain carried by their envelope protein. Here, we demonstrate that the Neuro-2a tumor cell line--originating from a spontaneous A/J mouse neuroblastoma--produces an infectious retrovirus that most probably results from a recombination event between 2 mouse endogenous retroviral elements. This Neuro-2a-associated recombinant retrovirus derives from the unique ecotropic provirus located at the Emv-1 locus, but with a gag sequence conferring B-tropism, thus allowing its high-level amplification in Neuro-2a cells. We show that knocking down -by RNA interference- this endogenous retrovirus in Neuro-2a cells has no effect on the transformed phenotype of the cells, but results in delayed tumor growth and prolonged animal survival, following engraftment of the cells into immunocompetent mice. Recombination between endogenous retroviruses, amplification of the resulting element and high-level expression of its immunosuppressive activity are therefore likely steps of an immunoediting process, leading to an invading tumor.


Assuntos
Retrovirus Endógenos/genética , Amplificação de Genes/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Camundongos , Dados de Sequência Molecular , RNA Interferente Pequeno/genética
14.
Cancer Res ; 65(7): 2588-91, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15805254

RESUMO

Tumor development is a multistep process in which both genetic and epigenetic events cooperate for the emergence of a malignant clone. The possibility that endogenous retroviruses promote the expansion of a neoplastic clone by subverting immune surveillance has been proposed, but remained elusive. Here we show that knocking down-by RNA interference-an endogenous retrovirus spontaneously induced in the B16 murine melanoma results in the rejection of the tumor cells in immunocompetent mice, under conditions where control melanoma cells grow into lethal tumors. The knockdown does not modify the transformed phenotype of the cells, as measured both in vitro by a soft agar assay and in vivo by tumor cell proliferation in immunoincompetent (X-irradiated and severe combined immunodeficiency) mice. Tumor rejection can be reverted upon adoptive transfer of regulatory T cells from control melanoma-engrafted mice, as well as upon reexpression of the sole envelope gene of the endogenous retrovirus in the knocked down cells. These results show that endogenous retroviruses can be essential for a regulatory T-cell-mediated subversion of immune surveillance and could be relevant to human tumors where such elements-and especially their envelope gene-are induced.


Assuntos
Melanoma Experimental/virologia , Retroviridae/crescimento & desenvolvimento , Animais , Linfócitos T CD4-Positivos/imunologia , Transformação Celular Viral/imunologia , Progressão da Doença , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Receptores de Interleucina-2/biossíntese , Retroviridae/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA