Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(3): 102936, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702253

RESUMO

Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Domínios Proteicos , Staphylococcus aureus , Humanos , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lectinas/química , Lectinas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis/química , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/metabolismo , Domínios Proteicos/fisiologia , Estrutura Terciária de Proteína , Ligação Proteica , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Escherichia coli , Células Epiteliais/microbiologia
2.
Microbiology (Reading) ; 168(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35253642

RESUMO

The acylation of sugars, most commonly via acetylation, is a widely used mechanism in bacteria that uses a simple chemical modification to confer useful traits. For structures like lipopolysaccharide, capsule and peptidoglycan, that function outside of the cytoplasm, their acylation during export or post-synthesis requires transport of an activated acyl group across the membrane. In bacteria this function is most commonly linked to a family of integral membrane proteins - acyltransferase-3 (AT3). Numerous studies examining production of diverse extracytoplasmic sugar-containing structures have identified roles for these proteins in O-acylation. Many of the phenotypes conferred by the action of AT3 proteins influence host colonisation and environmental survival, as well as controlling the properties of biotechnologically important polysaccharides and the modification of antibiotics and antitumour drugs by Actinobacteria. Herein we present the first systematic review, to our knowledge, of the functions of bacterial AT3 proteins, revealing an important protein family involved in a plethora of systems of importance to bacterial function that is still relatively poorly understood at the mechanistic level. By defining and comparing this set of functions we draw out common themes in the structure and mechanism of this fascinating family of membrane-bound enzymes, which, due to their role in host colonisation in many pathogens, could offer novel targets for the development of antimicrobials.


Assuntos
Aciltransferases , Peptidoglicano , Acetilação , Acilação , Aciltransferases/genética , Aciltransferases/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Peptidoglicano/metabolismo
3.
J Am Soc Mass Spectrom ; 28(9): 1855-1862, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28484973

RESUMO

Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Proteínas/química , RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Gases/química
4.
Nat Commun ; 7: 12194, 2016 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-27432510

RESUMO

Redox-regulated effector systems that counteract oxidative stress are essential for all forms of life. Here we uncover a new paradigm for sensing oxidative stress centred on the hydrophobic core of a sensor protein. RsrA is an archetypal zinc-binding anti-sigma factor that responds to disulfide stress in the cytoplasm of Actinobacteria. We show that RsrA utilizes its hydrophobic core to bind the sigma factor σ(R) preventing its association with RNA polymerase, and that zinc plays a central role in maintaining this high-affinity complex. Oxidation of RsrA is limited by the rate of zinc release, which weakens the RsrA-σ(R) complex by accelerating its dissociation. The subsequent trigger disulfide, formed between specific combinations of RsrA's three zinc-binding cysteines, precipitates structural collapse to a compact state where all σ(R)-binding residues are sequestered back into its hydrophobic core, releasing σ(R) to activate transcription of anti-oxidant genes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Estresse Oxidativo , Fator sigma/antagonistas & inibidores , Sequência de Aminoácidos , Cisteína/metabolismo , Cinética , Espectroscopia de Ressonância Magnética , Oxirredução , Zinco/metabolismo
5.
J Biol Chem ; 289(32): 22490-9, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24962582

RESUMO

BBK32 is a fibronectin (FN)-binding protein expressed on the cell surface of Borrelia burgdorferi, the causative agent of Lyme disease. There is conflicting information about where and how BBK32 interacts with FN. We have characterized interactions of a recombinant 86-mer polypeptide, "Bbk32," comprising the unstructured FN-binding region of BBK32. Competitive enzyme-linked assays utilizing various FN fragments and epitope-mapped anti-FN monoclonal antibodies showed that Bbk32 binding involves both the fibrin-binding and the gelatin-binding domains of the 70-kDa N-terminal region (FN70K). Crystallographic and NMR analyses of smaller Bbk32 peptides complexed, respectively, with (2-3)FNI and (8-9)FNI, demonstrated that binding occurs by ß-strand addition. Isothermal titration calorimetry indicated that Bbk32 binds to isolated FN70K more tightly than to intact FN. In a competitive enzyme-linked binding assay, complex formation with Bbk32 enhanced binding of FN with mAbIII-10 to the (10)FNIII module. Thus, Bbk32 binds to multiple FN type 1 modules of the FN70K region by a tandem ß-zipper mechanism, and in doing so increases accessibility of FNIII modules that interact with other ligands. The similarity in the FN-binding mechanism of BBK32 and previously studied streptococcal proteins suggests that the binding and associated conformational change of FN play a role in infection.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , Cristalografia por Raios X , Epitopos/química , Epitopos/metabolismo , Fibronectinas/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
6.
J Biol Chem ; 289(18): 12842-51, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24627488

RESUMO

The adjacent fibrinogen (Fg)- and fibronectin (Fn)-binding sites on Fn-binding protein A (FnBPA), a cell surface protein from Staphylococcus aureus, are implicated in the initiation and persistence of infection. FnBPA contains a single Fg-binding site (that also binds elastin) and multiple Fn-binding sites. Here, we solved the structure of the N2N3 domains containing the Fg-binding site of FnBPA in the apo form and in complex with a Fg peptide. The Fg binding mechanism is similar to that of homologous bacterial proteins but without the requirement for "latch" strand residues. We show that the Fg-binding sites and the most N-terminal Fn-binding sites are nonoverlapping but in close proximity. Although Fg and a subdomain of Fn can form a ternary complex on an FnBPA protein construct containing a Fg-binding site and single Fn-binding site, binding of intact Fn appears to inhibit Fg binding, suggesting steric regulation. Given the concentrations of Fn and Fg in the plasma, this mechanism might result in targeting of S. aureus to fibrin-rich thrombi or elastin-rich tissues.


Assuntos
Adesinas Bacterianas/metabolismo , Fibrinogênio/metabolismo , Fibronectinas/metabolismo , Staphylococcus aureus/metabolismo , Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Fibrinogênio/química , Fibronectinas/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Staphylococcus aureus/genética , Ressonância de Plasmônio de Superfície
7.
PLoS One ; 6(4): e18899, 2011 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-21526122

RESUMO

Staphylococcus aureus is a commensal organism and a frequent cause of skin and soft tissue infections, which can progress to serious invasive disease. This bacterium uses its fibronectin binding proteins (FnBPs) to invade host cells and it has been hypothesised that this provides a protected niche from host antimicrobial defences, allows access to deeper tissues and provides a reservoir for persistent or recurring infections. FnBPs contain multiple tandem fibronectin-binding repeats (FnBRs) which bind fibronectin with varying affinity but it is unclear what selects for this configuration. Since both colonisation and skin infection are dependent upon the interaction of S. aureus with keratinocytes we hypothesised that this might select for FnBP function and thus composition of the FnBR region. Initial experiments revealed that S. aureus attachment to keratinocytes is rapid but does not require FnBRs. By contrast, invasion of keratinocytes was dependent upon the FnBR region and occurred via similar cellular processes to those described for endothelial cells. Despite this, keratinocyte invasion was relatively inefficient and appeared to include a lag phase, most likely due to very weak expression of α(5)ß(1) integrins. Molecular dissection of the role of the FnBR region revealed that efficient invasion of keratinocytes was dependent on the presence of at least three high-affinity (but not low-affinity) FnBRs. Over-expression of a single high-affinity or three low-affinity repeats promoted invasion but not to the same levels as S. aureus expressing an FnBPA variant containing three high-affinity repeats. In summary, invasion of keratinocytes by S. aureus requires multiple high-affinity FnBRs within FnBPA, and given the importance of the interaction between these cell types and S. aureus for both colonisation and infection, may have provided the selective pressure for the multiple binding repeats within FnBPA.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/metabolismo , Queratinócitos/microbiologia , Sequências Repetitivas de Aminoácidos , Staphylococcus aureus/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/microbiologia , Humanos , Integrina alfa5beta1/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Recombinantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Fatores de Tempo
8.
PLoS Pathog ; 6(6): e1000964, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20585570

RESUMO

Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn) bridging to alpha(5)beta(1) integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs) with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis.


Assuntos
Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sequências Repetitivas de Ácido Nucleico/genética , Sepse/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/fisiologia , Virulência , Animais , Aderência Bacteriana , Western Blotting , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/microbiologia , Ensaio de Imunoadsorção Enzimática , Humanos , Masculino , Camundongos , Sepse/metabolismo , Sepse/patologia , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Veias Umbilicais/citologia , Veias Umbilicais/microbiologia
9.
FEBS Lett ; 580(1): 273-7, 2006 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-16376343

RESUMO

Staphylococcus aureus possesses cell-wall attached proteins that bind the human protein fibronectin (Fn). An intermodule interface between the 4F1 and 5F1 modules in the N-terminal domain of Fn is maintained on bacterial peptide binding but there is a small change in the intermodule orientation and alignment of beta-strands that are predicted to bind the peptide. The module pair is elongated, as in the unbound state. Combined with evidence that residues in both 4F1 and 5F1 are directly involved in peptide binding, this observation supports the hypothesis that, when bound to intact Fn, the bacterial protein adopts an unusual, highly extended conformation.


Assuntos
Adesinas Bacterianas/química , Fibronectinas/química , Peptídeos/química , Staphylococcus aureus/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/genética , Estrutura Secundária de Proteína , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Relação Estrutura-Atividade
10.
J Biol Chem ; 280(19): 18803-9, 2005 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-15737988

RESUMO

BBK32 is a fibronectin-binding protein from the Lyme disease-causing spirochete Borrelia burgdorferi. In this study, we show that BBK32 shares sequence similarity with fibronectin module-binding motifs previously identified in proteins from Streptococcus pyogenes and Staphylococcus aureus. Nuclear magnetic resonance spectroscopy and isothermal titration calorimetry are used to confirm the binding sites of BBK32 peptides within the N-terminal domain of fibronectin and to measure the affinities of the interactions. Comparison of chemical shift perturbations in fibronectin F1 modules on binding of peptides from BBK32, FnBPA from S. aureus, and SfbI from S. pyogenes provides further evidence for a shared mechanism of binding. Despite the different locations of the bacterial attachment sites in BBK32 compared with SfbI from S. pyogenes and FnBPA from S. aureus, an antiparallel orientation is observed for binding of the N-terminal domain of fibronectin to each of the pathogens. Thus, these phylogenetically and morphologically distinct bacterial pathogens have similar mechanisms for binding to human fibronectin.


Assuntos
Adesinas Bacterianas/química , Proteínas de Bactérias/química , Borrelia burgdorferi/metabolismo , Fibronectinas/metabolismo , Spirochaetales/metabolismo , Staphylococcus aureus/metabolismo , Streptococcus pyogenes/metabolismo , Adesinas Bacterianas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Calorimetria , Relação Dose-Resposta a Droga , Fibronectinas/química , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Pichia/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
11.
J Biomol NMR ; 31(2): 155-60, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15772755

RESUMO

Nitroxide species, which have an unpaired electron localized on a nitrogen atom, can be useful as NMR probes to identify areas of the surface of a protein involved in the formation of a complex. The proximity of an electron spin leads to higher NMR relaxation rates for protein nuclei. If a protein-ligand complex is formed the radical is excluded from certain sites on the protein surface, protecting them from relaxation effects. We show here that charged nitroxide species can be helpful for identifying regions of the surface of the 4F1(5)F1 module pair from human fibronectin involved in peptide binding.


Assuntos
Radicais Livres/química , Peptídeos/química , Peptídeos/metabolismo , Proteínas/química , Proteínas/metabolismo , Sítios de Ligação , Humanos , Modelos Moleculares , Nitrogênio/química , Óxidos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Estrutura Terciária de Proteína , Prótons , Eletricidade Estática
12.
J Biol Chem ; 279(37): 39017-25, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15247227

RESUMO

Fibronectin (Fn) binding by the Streptococcus pyogenes protein SfbI has been shown to trigger integrin-dependent internalization of this pathogen by human epithelial and endothelial cells. Here, using nuclear magnetic resonance spectroscopy and isothermal titration calorimetry in a dissection approach, the basis for the specificity and high affinity of the interaction between the N-terminal domain of Fn and SfbI is revealed. Each of the five Fn type 1 modules is directly involved in the interaction and is recognized by short consecutive motifs within the repeat region of SfbI. Crucially, these motifs must be combined in the correct order to form a high affinity ligand for the N-terminal domain of Fn.


Assuntos
Fibronectinas/metabolismo , Streptococcus/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Ligação Competitiva , Calorimetria , Núcleo Celular/metabolismo , Fibronectinas/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Pichia/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Termodinâmica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA