Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 14(4): 1070-1082, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33897821

RESUMO

Human transformation of natural habitats facilitates pathogen transmission between domestic and wild species. The guigna (Leopardus guigna), a small felid found in Chile, has experienced habitat loss and an increased probability of contact with domestic cats. Here, we describe the interspecific transmission of feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) between domestic cats and guignas and assess its correlation with human landscape perturbation. Blood and tissue samples from 102 free-ranging guignas and 262 domestic cats were collected and analyzed by PCR and sequencing. Guigna and domestic cat FeLV and FIV prevalence were very similar. Phylogenetic analysis showed guigna FeLV and FIV sequences are positioned within worldwide domestic cat virus clades with high nucleotide similarity. Guigna FeLV infection was significantly associated with fragmented landscapes with resident domestic cats. There was little evidence of clinical signs of disease in guignas. Our results contribute to the understanding of the implications of landscape perturbation and emerging diseases.

2.
Zootaxa ; 4603(1): zootaxa.4603.1.8, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717244

RESUMO

Ectinogonia Spinola 1837 is composed of 22 species to date, but its taxonomic history has been complex and is still unresolved. The species of the Santiagan Province of Central Chile are particularly complex because they show important morphological variability and overlapping traits, making species identification and delimitation difficult. The main goal of the present study is to show the phylogenetic relationships among species of Ectinogonia of the Santiagan province and discuss the taxonomic and systematic implications of our findings. Phylogeny reconstructions as well as a haplotype network disclosed four groups, partially inconsistent with the traditional taxonomy. Actually, the two Ectinogonia speciosa subspecies (E. speciosa speciosa (Germain 1856) and E. speciosa oscuripennis Cobos 1954) belong to two distinct clades, which are not reciprocally monophyletic, meaning that Ectinogonia speciosa is polyphyletic. On the other hand, the two other clades each contain, two nominal species (E. buquetii (Spinola 1837) and E. vidali Moore Guerrero 2017, and E. isamarae Moore 1994 and E. speciosa oscuripennis Cobos 1954) without reciprocal haplotype sorting. These results suggest that: (1) E. speciosa oscuripennis should be raised to species level and (2) the following new synonymies are proposed: E. isamarae Moore 1994 is synonymised with E. oscuripennis Cobos 1954 and E. vidali Moore Guerrero 2017 is synonymised with E. buquetii (Spinola 1837).


Assuntos
Besouros , Animais , Chile , Haplótipos , Filogenia
3.
J Vet Med Sci ; 81(12): 1740-1748, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31611482

RESUMO

Owned, free-roaming domestic cats are abundant in the Chilean countryside, having high probability of contact with wildlife and potentially participating as reservoirs of zoonotic pathogens. In the present study, 131 cats from two remote study areas (Valdivia and Chiloe Island) in southern Chile were analyzed for infection/exposure to eight pathogens. Serum samples from 112 cats were tested for antigens against feline leukemia virus (FeLV antigen-ELISA) and antibodies against feline immunodeficiency virus (FIV-ELISA) and canine distemper virus (CDV-serum neutralization), yielded occurrence of 8.9, 1.7 and 0.8% respectively. The presence of DNA of five vector-borne pathogens, piroplasmids, Ehrlichia spp., Anaplasma spp., Rickettsia spp. and Bartonella spp. was investigated in thirty cats. Overall observed occurrence was 6.6% (2/30) for both Anaplasma platys, and B. henselae, and 3.3% (1/30) for both Bartonella sp. and Theileria equi. Observed occurrence for all vector-borne pathogens in Valdivia area was significantly higher than in Chiloe Island (5/15 vs 0/15; P=0.04). Our results represent the first description of exposure to CDV and DNA detection of T. equi and A. platys in domestic cats in Chile. The results highlight the importance of performing pathogen screening in owned, free-roaming rural cats to evaluate their potential role as reservoirs of infection and vectors for disease transmission to wildlife.


Assuntos
Doenças do Gato/epidemiologia , Reservatórios de Doenças/veterinária , Vírus da Imunodeficiência Felina/imunologia , Vírus da Leucemia Felina/imunologia , Animais , Animais Selvagens , Doenças do Gato/sangue , Doenças do Gato/transmissão , Doenças do Gato/virologia , Gatos , Chile , Chlorocebus aethiops , Estudos Transversais , DNA Viral/genética , DNA Viral/isolamento & purificação , Reservatórios de Doenças/virologia , Vetores de Doenças , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Imunofluorescência/veterinária , Vírus da Imunodeficiência Felina/genética , Vírus da Leucemia Felina/genética , Masculino , Projetos Piloto , População Rural , Células Vero , Zoonoses/transmissão , Zoonoses/virologia
4.
PLoS One ; 11(5): e0154766, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168069

RESUMO

BACKGROUND: Marine species have colonized extreme environments during evolution such as freshwater habitats. The amphidromous teleost fish, Galaxias maculatus is found mainly migrating between estuaries and rivers, but some landlocked populations have been described in lakes formed during the last deglaciation process in the Andes. In the present study we use mtDNA sequences to reconstruct the historical scenario of colonization of such a lake and evaluated the osmoregulatory shift associated to changes in habitat and life cycle between amphidromous and landlocked populations. RESULTS: Standard diversity indices including the average number of nucleotide differences (Π) and the haplotype diversity index (H) indicated that both populations were, as expected, genetically distinctive, being the landlocked population less diverse than the diadromous one. Similarly, pairwise GST and NST comparison detected statistically significant differences between both populations, while genealogy of haplotypes evidenced a recent founder effect from the diadromous stock, followed by an expansion process in the lake. To test for physiological differences, individuals of both populations were challenged with a range of salinities from 0 to 30 ppt for 8 days following a period of progressive acclimation. The results showed that the landlocked population had a surprisingly wider tolerance to salinity, as landlocked fish survival was 100% from 0 to 20 ppt, whereas diadromous fish survival was 100% only from 10 to 15 ppt. The activity of ATPase enzymes, including Na+/K+-ATPase (NKA), and H+-ATPase (HA) was measured in gills and intestine. Activity differences were detected between the populations at the lowest salinities, including differences in ATPases other than NKA and HA. Population differences in mortality are not reflected in enzyme activity differences, suggesting divergence in other processes. CONCLUSIONS: These results clearly demonstrate the striking adaptive changes of G. maculatus osmoregulatory system, especially at hyposmotic environments, associated to a drastic shift in habitat and life cycle at a scale of a few thousand years.


Assuntos
Aclimatação/fisiologia , Osmeriformes/fisiologia , Osmorregulação/fisiologia , Aclimatação/efeitos dos fármacos , Migração Animal/fisiologia , Animais , Teorema de Bayes , Biodiversidade , Evolução Biológica , Haplótipos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Macrolídeos/farmacologia , Osmorregulação/efeitos dos fármacos , Ouabaína/farmacologia , Dinâmica Populacional , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Análise de Sobrevida
5.
PLoS One ; 10(4): e0123956, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25898340

RESUMO

Understanding genetic differentiation and speciation processes in marine species with high dispersal capabilities is challenging. The Chilean dolphin, Cephalorhynchus eutropia, is the only endemic cetacean of Chile and is found in two different coastal habitats: a northern habitat with exposed coastlines, bays and estuaries from Valparaíso (33°02'S) to Chiloé (42°00'S), and a southern habitat with highly fragmented inshore coastline, channels and fjords between Chiloé and Navarino Island (55°14'S). With the aim of evaluating the potential existence of conservation units for this species, we analyzed the genetic diversity and population structure of the Chilean dolphin along its entire range. We genotyped 21 dinucleotide microsatellites for 53 skin samples collected between 1998 and 2012 (swab: n = 8, biopsy: n = 38, entanglement n = 7). Bayesian clustering and spatial model analyses identified two genetically distinct populations corresponding to the northern and southern habitats. Genetic diversity levels were similar in the two populations (He: 0.42 v/s 0.45 for southern and northern populations, respectively), while effective size population was higher in the southern area (Ne: 101 v/s 39). Genetic differentiation between these two populations was high and significant (FST = 0.15 and RST = 0.19), indicating little or no current gene flow. Because of the absence of evident geographical barriers between the northern and southern populations, we propose that genetic differentiation may reflect ecological adaptation to the different habitat conditions and resource uses. Therefore, the two genetic populations of this endemic and Near Threatened species should be considered as different conservation units with independent management strategies.


Assuntos
Golfinhos/genética , Repetições de Microssatélites , Animais , Chile , Feminino , Masculino , Filogeografia
6.
J Wildl Dis ; 51(1): 199-208, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25380363

RESUMO

Feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) are two of the most common viruses affecting domestic cats (Felis catus). During the last two decades, reports show that both viruses also infect or affect other species of the family Felidae. Human landscape perturbation is one of the main causes of emerging diseases in wild animals, facilitating contact and transmission of pathogens between domestic and wild animals. We investigated FIV and FeLV infection in free-ranging guignas (Leopardus guigna) and sympatric domestic cats in human perturbed landscapes on Chiloé Island, Chile. Samples from 78 domestic cats and 15 guignas were collected from 2008 to 2010 and analyzed by PCR amplification and sequencing. Two guignas and two domestic cats were positive for FIV; three guignas and 26 domestic cats were positive for FeLV. The high percentage of nucleotide identity of FIV and FeLV sequences from both species suggests possible interspecies transmission of viruses, facilitated by increased contact probability through human invasion into natural habitats, fragmentation of guigna habitat, and poultry attacks by guignas. This study enhances our knowledge on the transmission of pathogens from domestic to wild animals in the global scenario of human landscape perturbation and emerging diseases.


Assuntos
Felidae/virologia , Vírus da Imunodeficiência Felina , Infecções por Lentivirus/veterinária , Vírus da Leucemia Felina , Infecções por Retroviridae/veterinária , Infecções Tumorais por Vírus/veterinária , Animais , Animais Selvagens , Doenças do Gato/epidemiologia , Doenças do Gato/virologia , Gatos , Chile/epidemiologia , Atividades Humanas , Ilhas , Infecções por Lentivirus/epidemiologia , Infecções por Retroviridae/epidemiologia , Infecções por Retroviridae/virologia , Infecções Tumorais por Vírus/epidemiologia , Infecções Tumorais por Vírus/virologia
7.
Mol Phylogenet Evol ; 56(1): 115-24, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20139020

RESUMO

The evolution and the historical biogeography of the Southern Ocean marine benthic fauna are closely related to major tectonic and climatic changes that occurred in this region during the last 55 million years (Ma). Several families, genera and even species of marine organisms are shared between distant biogeographic provinces in this region. This pattern of distribution in marine benthic invertebrates has been commonly explained by vicariant speciation due to plate tectonics. However, recent molecular studies have provided new evidence for long-distance dispersion as a plausible explanation of biogeographical patterns in the Southern Ocean. True limpets of the genus Nacella are currently distributed in different biogeographic regions of the Southern Ocean such as Antarctica, Kerguelen Province, southern New Zealand Antipodean Province, North-Central Chile and South American Magellanic Province. Here, we present phylogenetic reconstructions using two mitochondrial DNA markers (Cytochrome Oxidase I and Cytochrome b) to look into the relationships among Nacella species and to determine the origin and diversification of the genus. Phylogenies were reconstructed using two methods, Maximum Parsimony and Bayesian Inference, while divergence time among Nacella species was estimated following a relaxed Bayesian approach. For this purpose, we collected inter- and subtidal species belonging to four biogeographic regions in the Southern Ocean: Antarctica, Kerguelen Province, Central Chile, and Magellanic Province. Our molecular results agree with previous morphological and molecular studies supporting the monophyly of Nacella and its sister relationship with Cellana. Two rounds of diversification are recognized in the evolution of Nacella. The first one occurred at the end of the Miocene and gave rise to the main lineages, currently distributed in Antarctica, South America or Kerguelen Province. Large genetic divergence was detected among Nacella species from these distant biogeographic provinces emphasizing the significance of trans-oceanic discontinuities and suggesting long-distance dispersal was relatively unimportant. The second diversification round consisted of a more recent Pleistocene radiation in the Magellanic region. In this province, different morphological species of Nacella exhibit extreme low levels of genetic divergence with absence of reciprocal monophyly among them. According to our time estimation, the origin and diversification of Nacella in the Southern Ocean is more recent (<15 MY) than the expected under the hypothesis of vicariant speciation due to plate tectonics. The evolution of this genus seems to be closely related to drastic climatic and oceanographic changes in the Southern Ocean during the middle-Miocene climatic transition. In spite of the high number of species described for the Magellanic Province, molecular results indicate that these species are the most derived ones in the evolution of the genus and therefore that the Magellanic region does not need to correspond to the origin center of Nacella. The absence of genetic divergence among these species supports a very recent radiation process accompanied by rapid morphological and ecological diversification.


Assuntos
Evolução Molecular , Gastrópodes/genética , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Gastrópodes/classificação , Variação Genética , Geografia , Oceanos e Mares , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA