Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 2500, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510259

RESUMO

Cardiac complications such as electrical abnormalities including conduction delays and arrhythmias are the main cause of death in individuals with Myotonic Dystrophy type 1 (DM1). We developed a disease model using iPSC-derived cardiomyocytes (iPSC-CMs) from a healthy individual and two DM1 patients with different CTG repeats lengths and clinical history (DM1-1300 and DM1-300). We confirmed the presence of toxic RNA foci and mis-spliced MBNL1/2 transcripts in DM1 iPSC-CMs. In DM1-1300, we identified a switch in the cardiac sodium channel SCN5A from the adult to the neonatal isoform. The down-regulation of adult SCN5A isoforms is consistent with a shift in the sodium current activation to depolarized potentials observed in DM1-1300. L-type calcium current density was higher in iPSC-CMs from DM1-1300, which is correlated with the overexpression of the CaV1.2 transcript and proteins. Importantly, INa and ICaL dysfunctions resulted in prolonged action potentials duration, slower velocities, and decreased overshoots. Optical mapping analysis revealed a slower conduction velocity in DM1-1300 iPSC-CM monolayers. In conclusion, our data revealed two distinct ions channels perturbations in DM1 iPSC-CM from the patient with cardiac dysfunction, one affecting Na+ channels and one affecting Ca2+ channels. Both have an impact on cardiac APs and ultimately on heart conduction.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Ativação do Canal Iônico , Canais Iônicos/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Distrofia Miotônica/metabolismo , Distrofia Miotônica/fisiopatologia , Potenciais de Ação , Adulto , Biópsia , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Suscetibilidade a Doenças , Imunofluorescência , Humanos , Masculino
2.
Gene ; 536(2): 348-56, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24334129

RESUMO

BACKGROUND: A variant of the ether-à-go-go related channel (hERG), p.Arg148Trp (R148W) was found at heterozygous state in two infants who died from sudden infant death syndrome (SIDS), one with documented prolonged QTc and Torsade de Pointes (TdP), and in an adult woman with QTc >500 ms, atrioventricular block and TdP. This variant was previously reported in cases of severe ventricular arrhythmia but very rarely in control subjects. Its classification as mutation or polymorphism awaited electrophysiological characterization. METHODS: The properties of this N-terminal, proximal domain, hERG variant were explored in Xenopus oocytes injected with the same amount of RNA encoding for either hERG/WT or hERG/R148W or their equimolar mixture. The human ventricular cell (TNNP) model was used to test the effects of changes in hERG current. RESULTS: R148W alone produced a current similar to the WT (369 ± 76 nA (mean ± SEM), n=13 versus 342 ± 55 nA in WT, n=13), while the co-expression of 1/2 WT+1/2 R148W lowered the current by 29% versus WT (243 ± 35 nA, n=13, p<0.05). The voltage dependencies of steady-state activation and inactivation were not changed in the variant alone or in co-expression with the WT. The time constants of fast recovery from inactivation and of fast and slow deactivation analyzed between -120 and +20 mV were not changed. The voltage-dependent distribution of the current amplitudes among fast-, slow- and non-deactivating fractions was unaltered. A 6.6% increase in APD90 from 323.5 ms to 345 ms was observed using the human cardiac ventricular myocyte model. CONCLUSIONS: Such a decrease in hERG current as evidenced here when co-expressing the hERG/R148W variant with the WT may have predisposed to the observed long QT syndrome and associated TdP. Therefore, the heterozygous carriers of hERG/R148W may be at risk of cardiac sudden death.


Assuntos
Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/anormalidades , Síndrome do QT Longo/genética , Mutação/genética , Transativadores/genética , Adulto , Animais , Arritmias Cardíacas/metabolismo , Síndrome de Brugada , Doença do Sistema de Condução Cardíaco , Linhagem Celular , Morte Súbita Cardíaca , Feminino , Células HEK293 , Coração/fisiopatologia , Sistema de Condução Cardíaco/metabolismo , Heterozigoto , Humanos , Lactente , Síndrome do QT Longo/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Oocistos/metabolismo , Transativadores/metabolismo , Regulador Transcricional ERG , Xenopus/genética , Xenopus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA