Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Curr Drug Targets ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38706348

RESUMO

Ferroptosis is implicated in the pathogenesis of multiple diseases, including neurodegenerative diseases, cardiovascular diseases, kidney pathologies, ischemia-reperfusion injury, and cancer. The current review article highlights the involvement of ferroptosis in traumatic brain injury, acute kidney damage, ethanol-induced liver injury, and PM2.5-induced lung injury. Melatonin, a molecule produced by the pineal gland and many other organs, is well known for its anti- aging, anti-inflammatory, and anticancer properties and is used in the treatment of different diseases. Melatonin's ability to activate anti-ferroptosis pathways including sirtuin (SIRT)6/p- nuclear factor erythroid 2-related factor 2 (Nrf2), Nrf2/ antioxidant responsive element (ARE)/ heme oxygenase (HO-1)/SLC7A11/glutathione peroxidase (GPX4)/ prostaglandin-endoperoxide synthase 2 (PTGS2), extracellular signal-regulated kinase (ERK)/Nrf2, ferroportin (FPN), Hippo/ Yes-associated protein (YAP), Phosphoinositide 3-kinase (PI3K)/ protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) and SIRT6/ nuclear receptor coactivator 4 (NCOA4)/ ferritin heavy chain 1 (FTH1) signaling pathways suggests that it could serve as a valuable therapeutic agent for preventing cell death associated with ferroptosis in various diseases. Further research is needed to fully understand the precise mechanisms by which melatonin regulates ferroptosis and its potential as a therapeutic target.

2.
Curr Med Chem ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38706364

RESUMO

Gynecological cancers, encompassing endometrial, ovarian, and cervical cancer, pose significant challenges in clinical practice, often marked by high mortality rates and treatment resistance. Despite advances in standard therapies, including chemoradiation and surgery, tumor recurrence and metastasis remain formidable obstacles. In this context, there is a pressing need to explore novel therapeutic strategies that offer improved efficacy and reduced side effects. Herbal medicine, particularly compounds like resveratrol, has garnered attention for its diverse biological properties, including anticancer effects. Resveratrol, a multipotential nutraceutical, holds promise in gynecological cancer therapy through its modulation of key cellular and molecular processes. This review aims to provide an overview of the current status, challenges, and opportunities in utilizing resveratrol for gynecological cancer treatment. We discuss its role in miRNA regulation, clinical trial findings, and the development of effective formulations. By elucidating the underlying mechanisms of resveratrol's anticancer effects and exploring innovative delivery systems, we aim to shed light on the potential avenues for optimizing its therapeutic benefits in gynecological cancers.

3.
Curr Med Chem ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38303533

RESUMO

Lung cancer is a leading cause of mortality and morbidity worldwide. Due to significant advances in therapeutic strategies, patients' survival and life quality have been improved, however there is still an urgent requirement for developing more effective therapeutic methods. Resveratrol, a natural polyphenol with numerous biological potentials, has been widely studied. It has shown therapeutic potetial in various diseases including neurodegenerative diseases, cardiovascular disorders, and cancers through the regulation of key cellular signaling such as apoptosis, as well as molecular pathways such as microRNA modulation. It has been reported that resveratrol acts as an anticancer agent against lung cancer in vivo and in vitro. Resveratrol could combat against lung cancer by modulating various molecular targets and signaling pathways involved in oxidative stress, inflammation, apoptosis and autoghagy and also microRNAs expression. Moreover, novel delivery systems and analogs have recently been introduced to promote the anticancer impacts of resveratrol. In this article, we review current evidence on the anticancer effects of resveratrol and its novel formulations in the treatment of lung cancer with a focus on underlying mechanisms.

4.
Curr Mol Pharmacol ; 17: e18761429263063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38284731

RESUMO

Gynecological cancers are serious life-threatening diseases responsible for high morbidity and mortality around the world. Chemotherapy, radiotherapy, and surgery are considered standard therapeutic modalities for these cancers. Since the mentioned treatments have undesirable side effects and are not effective enough, further attempts are required to explore potent complementary and/or alternative treatments. This study was designed to review and discuss the anticancer potentials of baicalin against gynecological cancers based on causal mechanisms and underlying pathways. Traditional medicine has been used for thousands of years in the therapy of diverse human diseases. The therapeutic effects of natural compounds like baicalin have been widely investigated in cancer therapy. Baicalin was effective against gynecological cancers by regulating key cellular mechanisms, including apoptosis, autophagy, and angiogenesis. Baicalin exerted its anticancer property by regulating most molecular signaling pathways, including PI3K/Akt/mTOR, NFκB, MAPK/ERK, and Wnt/ß-catenin. However, more numerous experimental and clinical studies should be designed to find the efficacy of baicalin and the related mechanisms of action.


Assuntos
Neoplasias da Mama , Flavonoides , Neoplasias dos Genitais Femininos , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias dos Genitais Femininos/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos
5.
Curr Med Chem ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38265392

RESUMO

Quercetin, a naturally occurring polyphenolic compound found in abundance in vegetables and fruits, has emerged as a compelling subject of study in cancer treatment. This comprehensive review delves into the significance and originality of quercetin's multifaceted mechanisms of action, with a particular focus on its application in various brain tumors such as glioblastoma, glioma, neuroblastoma, astrocytoma, and medulloblastoma. This review scrutinizes the distinctive facets of quercetin's anti-cancer properties, highlighting its capacity to modulate intricate signaling pathways, trigger apoptosis, impede cell migration, and enhance radiosensitivity in brain tumor cells. Significantly, it synthesizes recent research findings, providing insights into potential structure-activity relationships that hold promise for developing novel quercetin derivatives with heightened effectiveness. By unraveling the unique attributes of quercetin's anti-brain tumor effects and exploring its untapped potential in combination therapies, this review contributes to a deeper comprehension of quercetin's role as a prospective candidate for advancing innovative treatments for brain cancer.

6.
Curr Mol Med ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37933211

RESUMO

Urological cancers, including prostate, kidney, and bladder cancer are problematic human diseases worldwide. Current strategies for the treatment of these cancers are chemotherapy, radiotherapy, surgery, or a combination of mentioned therapies. Due to the high mortality and morbidity rate of urological cancers and possible side effects of available standard treatments, searching for more effective and safe treatments is a critical issue. The beneficial properties of natural compounds, such as berberine, have been widely investigated in human diseases. Moreover, the anticancer potential of this agent has been extensively documented, especially in experimental studies. In this review, we have tried to discuss the effect of berberine against urological cancers, focusing on cellular and molecular mechanisms.

7.
Expert Rev Gastroenterol Hepatol ; 17(10): 1011-1029, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37796746

RESUMO

INTRODUCTION: Intestinal diseases, a leading global cause of mortality and morbidity, carry a substantial socioeconomic burden. Small and large intestines play pivotal roles in gastrointestinal physiology and food digestion. Pathological conditions, such as gut dysbiosis, inflammation, cancer, therapy-related complications, ulcers, and ischemia, necessitate the urgent exploration of safe and effective complementary therapeutic strategies for optimal intestinal health. AREAS COVERED: This article evaluates the potential therapeutic effects of melatonin, a molecule with a wide range of physiological actions, on intestinal diseases including inflammatory bowel disease, irritable bowel syndrome, colon cancer, gastric/duodenal ulcers and other intestinal disorders. EXPERT OPINION: Due to anti-inflammatory and antioxidant properties as well as various biological actions, melatonin could be a therapeutic option for improving digestive disorders. However, more researches are needed to fully understand the potential benefits and risks of using melatonin for digestive disorders.


Assuntos
Gastroenteropatias , Enteropatias , Síndrome do Intestino Irritável , Melatonina , Humanos , Melatonina/efeitos adversos , Enteropatias/tratamento farmacológico , Gastroenteropatias/terapia , Antioxidantes/efeitos adversos
8.
Fundam Clin Pharmacol ; 36(5): 777-789, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35384044

RESUMO

Hematological malignancies including leukemia, multiple myeloma, and lymphoma are known as leading causes of death around the world. Despite all developments in cancer management, current therapeutic methods are still relatively inefficient, leading to the heavy financial burdens for public health systems. Strategic attempts in clinical practice must be based on three serious goals including (1) increasing the efficacy of treatments and decreasing their side-effects; (2) decreasing financial price of treatments and related morbidity and mortality rates; and (3) improving life quality and survival of affected patients. Melatonin, a multipotential neurohormone mainly secreted by the pineal gland, has recently been shown to play essential roles in the treatment of various human diseases. Moreover, it possesses anticancer impacts and acts through regulation of underlying cellular and molecular mechanisms. In this article, we review mechanistic roles and beneficial effects of melatonin against hematological cancers, especially lymphoma.


Assuntos
Neoplasias Hematológicas , Linfoma , Melatonina , Humanos , Linfoma/tratamento farmacológico , Melatonina/farmacologia , Melatonina/uso terapêutico , Transdução de Sinais
9.
Mol Biol Rep ; 48(5): 4659-4665, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34061325

RESUMO

Neuroblastoma is a deadly and serious malignancy among children. Although many developments have been occurred for the treatment of this disease, the rate of mortality is still high. Therefore, it is necessary to search for novel complementary and alternative therapies. Melatonin, a hormone secreted from pineal gland, is a multifunctional agent having anticancer potentials. Recently, several investigations have been conducted indicating melatonin effects against neuroblastoma. In this paper, we summarize current evidence on anti-neuroblastoma effects of melatonin based on cellular pathways.


Assuntos
Antineoplásicos/uso terapêutico , Melatonina/uso terapêutico , Neuroblastoma/tratamento farmacológico , Pediatria , Pré-Escolar , Humanos , Melatonina/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Glândula Pineal/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Cancer Cell Int ; 21(1): 188, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789681

RESUMO

Cancers are serious life-threatening diseases which annually are responsible for millions of deaths across the world. Despite many developments in therapeutic approaches for affected individuals, the rate of morbidity and mortality is high. The survival rate and life quality of cancer patients is still low. In addition, the poor prognosis of patients and side effects of the present treatments underscores that finding novel and effective complementary and alternative therapies is a critical issue. Melatonin is a powerful anticancer agent and its efficiency has been widely documented up to now. Melatonin applies its anticancer abilities through affecting various mechanisms including angiogenesis, apoptosis, autophagy, endoplasmic reticulum stress and oxidative stress. Regarding the implication of mentioned cellular processes in cancer pathogenesis, we aimed to further evaluate the anticancer effects of melatonin via these mechanisms.

11.
Epigenomics ; 13(1): 65-81, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350862

RESUMO

miRNAs, small noncoding RNAs with crucial diagnostic and prognostic capabilities, play essential therapeutic roles in different human diseases. These biomarkers are involved in several biological mechanisms and are responsible for the regulation of multiple genes expressions in cells. miRNA-based therapy has shown a very bright future in the case of clinical interventions. Melatonin, the main product of the pineal gland, is a multifunctional neurohormone with numerous therapeutic potentials in human diseases. Melatonin is able to regulate miRNAs in different pathologies such as malignant and nonmalignant diseases, which can be considered as a novel kind of targeted therapy. Herein, this review discusses possible therapeutic utility of melatonin for the regulation of miRNAs in various pathological conditions.


Assuntos
Melatonina/farmacologia , MicroRNAs/efeitos dos fármacos , Neoplasias/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Neoplasias/tratamento farmacológico
12.
Curr Med Chem ; 28(2): 308-328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32013817

RESUMO

Lung cancer is a malignancy with a high morbidity and mortality rate, and affected patients have low survival and poor prognosis. The therapeutic approaches for the treatment of this cancer, including radiotherapy and chemotherapy, are not particularly effective partly due to late diagnosis. Therefore, the search for new diagnostic and prognostic tools is a critical issue. Novel biomarkers, such as exosomes, could be considered as potential diagnostic tools for malignancies, particularly lung cancer. Exosomes are nanovesicles, which are associated with different physiological and pathological conditions. It has been shown that these particles are released from many cells, such as cancer cells, immune cells and to some degree normal cells. Exosomes could alter the behavior of target cells through intercellular transfer of their cargo (e.g. DNA, mRNA, long non-coding RNAs, microRNAs and proteins). Thus, these vehicles may play pivotal roles in various physiological and pathological conditions. The current insights into lung cancer pathogenesis suggest that exosomes are key players in the pathogenesis of this cancer. Hence, these nanovesicles and their cargos could be used as new diagnostic, prognostic and therapeutic biomarkers in the treatment of lung cancer. Besides the diagnostic roles of exosomes, their use as drug delivery systems and as cancer vaccines is under investigation. The present review summarizes the current information on the diagnostic and pathogenic functions of exosomes in lung cancer.


Assuntos
Exossomos , Neoplasias Pulmonares , Biomarcadores , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , MicroRNAs/genética , Prognóstico
13.
J Ovarian Res ; 13(1): 130, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33148295

RESUMO

Gynecological cancers are among the leading causes of cancer-associated mortality worldwide. While the number of cases are rising, current therapeutic approaches are not efficient enough. There are considerable side-effects as well as treatment resistant types. In addition, which all make the treatment complicated for afflicted cases. Therefore, in order to improve efficacy of the treatment process and patients' quality of life, searching for novel adjuvant treatments is highly warranted. Curcumin, a promising natural compound, is endowed with numerous therapeutic potentials including significant anticancer effects. Recently, various investigations have demonstrated the anticancer effects of curcumin and its novel analogues on gynecological cancers. Moreover, novel formulations of curcumin have resulted in further propitious effects. This review discusses these studies and highlights the possible underlying mechanisms of the observed effects.


Assuntos
Curcumina/uso terapêutico , Neoplasias dos Genitais Femininos/tratamento farmacológico , Curcumina/farmacologia , Feminino , Humanos
14.
Cancer Cell Int ; 20: 466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005099

RESUMO

[This corrects the article DOI: 10.1186/s12935-020-01531-1.].

15.
Eur J Pharmacol ; 886: 173471, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32877658

RESUMO

Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.


Assuntos
Antioxidantes/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Melatonina/fisiologia , Transdução de Sinais , Animais , Antineoplásicos/uso terapêutico , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/fisiopatologia , Humanos , Melatonina/metabolismo
16.
Pharmacol Res ; 161: 105133, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32822869

RESUMO

Gastrointestinal (GI) cancers with a high incidence rate and adverse complications are associated with severe morbidity and mortality around the world. It is well recognized that early detection of the disease results in longer survival rate and better quality of life. Autophagy, an intracellular regulatory process, has been shown to play an essential role in the pathogenesis of various malignancies including GI cancers. MicroRNAs (miRNAs) are small non-coding RNAs that have regulatory functions in tumor cells and possess potential diagnostic values in early detection of cancers. It has been recently demonstrated that these molecules have modulatory effects on multiple steps of autophagy process occurring in GI malignancies. In this review, we aimed to highlight the role of autophagy-related microRNAs on GI cancer as potential targets for cancer therapy.


Assuntos
Autofagia , Biomarcadores Tumorais/metabolismo , Neoplasias Gastrointestinais/metabolismo , MicroRNAs/metabolismo , Animais , Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Autofagia/genética , Biomarcadores Tumorais/genética , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Transdução de Sinais
17.
Cell Commun Signal ; 18(1): 88, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517694

RESUMO

Autophagy has a crucial role in many cancers, including brain tumors. Several types of endogenous molecules (e.g. microRNAs, AKT, PTEN, p53, EGFR, and NF1) can modulate the process of autophagy. Recently miRNAs (small non-coding RNAs) have been found to play a vital role in the regulation of different cellular and molecular processes, such as autophagy. Deregulation of these molecules is associated with the development and progression of different pathological conditions, including brain tumors. It was found that miRNAs are epigenetic regulators, which influence the level of proteins coded by the targeted mRNAs with any modification of the genetic sequences. It has been revealed that various miRNAs (e.g., miR-7-1-3p, miR-340, miR-17, miR-30a, miR-224-3p, and miR-93), as epigenetic regulators, can modulate autophagy pathways within brain tumors. A deeper understanding of the underlying molecular targets of miRNAs, and their function in autophagy pathways could contribute to the development of new treatment methods for patients with brain tumors. In this review, we summarize the various miRNAs, which are involved in regulating autophagy in brain tumors. Moreover, we highlight the role of miRNAs in autophagy-related pathways in different cancers. Video abstract.


Assuntos
Autofagia , Neoplasias Encefálicas/metabolismo , MicroRNAs/fisiologia , Animais , Humanos
18.
Diabetes Metab Res Rev ; 36(8): e3336, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32415805

RESUMO

Diabetes mellitus (DM) is a common metabolic disease which may cause several complications, such as diabetic nephropathy (DN). The routine medical treatments used for DM are not effective enough and have many undesirable side effects. Moreover, the global increased prevalence of DM makes researchers try to explore potential complementary or alternative treatments. Nutraceuticals, as natural products with pharmaceutical agents, have a wide range of therapeutic properties in various pathologic conditions such as DN. However, the exact underlying mechanisms have not been fully understood. The purpose of this review is to summarize recent findings on the effect of nutraceuticals on DN.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/dietoterapia , Suplementos Nutricionais , Nefropatias Diabéticas/etiologia , Humanos
19.
Diabetol Metab Syndr ; 12: 30, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280378

RESUMO

Diabetes and diabetic complications are considered as leading causes of both morbidity and mortality in the world. Unfortunately, routine medical treatments used for affected patients possess undesirable side effects, including kidney and liver damages as well as gastrointestinal adverse reactions. Therefore, exploring the novel therapeutic strategies for diabetic patients is a crucial issue. It has been recently shown that melatonin, as main product of the pineal gland, despite its various pharmacological features including anticancer, anti-aging, antioxidant and anti-inflammatory effects, exerts anti-diabetic properties through regulating various cellular mechanisms. The aim of the present review is to describe potential roles of melatonin in the treatment of diabetes and its complications.

20.
Cell Oncol (Dordr) ; 43(3): 353-365, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32207043

RESUMO

BACKGROUND: Melanoma is a malignancy that stems from melanocytes and is defined as the most dangerous skin malignancy in terms of metastasis and mortality rates. CXC motif chemokine 10 (CXCL10), also known as interferon gamma-induced protein-10 (IP-10), is a small cytokine-like protein secreted by a wide variety of cell types. CXCL10 is a ligand of the CXC chemokine receptor-3 (CXCR3) and is predominantly expressed by T helper cells (Th cells), cytotoxic T lymphocytes (CTLs), dendritic cells, macrophages, natural killer cells (NKs), as well as some epithelial and cancer cells. Similar to other chemokines, CXCL10 plays a role in immunomodulation, inflammation, hematopoiesis, chemotaxis and leukocyte trafficking. CONCLUSIONS: Recent studies indicate that the CXCL10/CXCR3 axis may act as a double-edged sword in terms of pro- and anti-cancer activities in a variety of tissues and cells, especially in melanoma cells and their microenvironments. Most of these activities arise from the CXCR3 splice variants CXCR3-A, CXCR3-B and CXCR3-Alt. In this review, we discuss the pro- and anti-cancer properties of CXCL10 in various types of tissues and cells, particularly melanoma cells, including its potential as a therapeutic target.


Assuntos
Quimiocina CXCL10/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Antineoplásicos/uso terapêutico , Carcinogênese/metabolismo , Carcinogênese/patologia , Humanos , Modelos Biológicos , Receptores CXCR3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA