Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 332: 117295, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738716

RESUMO

The 2,4-dichlorophenol (2,4-DCP) is an important chemical precursor that can affect human endocrine system and induce pathological symptoms. This research reports the degradation of 2,4-DCP using lab-scale hydrodynamic cavitation (HC) approach, which is considered a green and effective method. To promote the degradation efficiency, the zero-valent iron (Fe0) as the catalyst for sulfate radical (SO4•-) generation via activation of sulfite (SO32-) salts was simultaneously used. Degradation efficiency was favorable in acidic pH than the alkaline pH due to higher production of active radicals and was dependent on the dose of Fe0 and SO32-. Under optimal condition, degradation efficiency by Fe0/HC/sulfite (96.67 ± 2.90%) was considerably enhanced compared to HC alone (45.37 ± 2.26%). Quenching experiments suggested that SO4•-, •OH, 1O2, and O2•- radicals were involved in the degradation of 2,4-DCP by Fe0/HC/sulfite process, but the dominant role was related to •OH (70.09% contribution) and SO4•- (29.91% contribution) radicals. From the turbulence model, turbulent pressure at venturi throat decreased from -0.42 MPa to -2.02 MPa by increasing the inlet pressure from 1.0 to 4.0 bar and increase in pressure gradient has intensified bubble collapse due to higher turbulence tension.


Assuntos
Ferro , Poluentes Químicos da Água , Humanos , Hidrodinâmica , Catálise , Sulfitos , Oxirredução
2.
Environ Sci Pollut Res Int ; 30(8): 21345-21359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36266594

RESUMO

This study aimed to model the removal of formaldehyde as an indoor air pollutant by Nephrolepis obliterata (R.Br.) J.Sm. plant using response surface methodology (RSM) and artificial neural network (ANN) models, and optimization of the models by particle swarm optimization algorithm (PSO). The data obtained in pilot-scale experiments under a controlled environment were used in this study. The effects of parameters on the removal efficiency such as formaldehyde concentration, relative humidity, light intensity, and leaf surface area were empirically investigated and considered as model parameters. The results of the RSM model, with power transformation, were in meaningful compromise with the experiments. A multilayer perceptron (MLP) neural network was also designed, and the mean of squared error (MSE), mean absolute error (MAE), and R2 were used to evaluate the network. Several training algorithms were assessed and the best one, the Levenberg Marquardt (LM), was selected. The PSO algorithm proved that the highest removal efficiency of formaldehyde was obtained in the presence of light, maximum leaf surface area and relative humidity, and at the lowest inlet concentration. The empirical system breakthrough occurred at 15 mg/m3 of formaldehyde, and the maximum elimination capacity was about 0.96 mg per m2 of leaves. The findings indicated that the ANN model predicted the removal efficiency more accurately compared to the RSM model.


Assuntos
Poluição do Ar em Ambientes Fechados , Traqueófitas , Biodegradação Ambiental , Redes Neurais de Computação , Algoritmos , Plantas , Formaldeído
3.
Environ Sci Pollut Res Int ; 28(36): 50696-50706, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33966142

RESUMO

Phthalates or phthalic acid esters (PAEs) are a group of compounds which they can be entered into the human body through the various pathways. The aim of this study was to examine associations between prenatal phthalates exposure with anthropometric measures of neonates. Urine samples were obtained from 121 Iranian pregnant women at their first trimester of pregnancy, and the levels of monobutyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), and mono (2-ethyl-5hydroxyhexyl) phthalate (MEHHP) metabolites were determined by gas chromatography mass spectrometry (GC/MS). The correlations between the maternal urinary concentrations of phthalate metabolites with anthropometric measures of neonates as well as with the socio-demographic factors of participants (maternal education, age, family income, pre-pregnancy body mass index), their lifestyle variables (smoking habit, food pattern, and physical activity), and use of cleaning products (cosmetic and household cleaning products) were investigated. MBzP, MBP, MEHP, and MEHHP were detected in 100% of the participants with the concentration ranged 120 to 860 µg/g creatinine. Significant correlations were observed between the urinary levels of maternal MBzP (adjusted ß = 0.3 (0.001), p = 0.03) and MEHHP (adjusted ß = 0.3 (0.001), p = 0.04) with the birth weight of female neonates. MBP (adjusted ß = -0.3 (0.02), p = 0.04) and MBzP (adjusted ß = -0.3 (0.001), p = 0.02) had negative associations with the head circumference in male and female newborns, respectively. Furthermore, plastic packaging for pickle and passive smoking during pregnancy were identified to be significantly associated with low birth weight (p value < 0.05). Iranian pregnant women had higher concentrations of urinary phthalates compared to the other countries. Based on the findings, the higher prenatal exposure to phthalates could adversely impact the health status of newborns.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Peso ao Nascer , Índice de Massa Corporal , Exposição Ambiental/análise , Feminino , Humanos , Recém-Nascido , Irã (Geográfico) , Masculino , Gravidez , Primeiro Trimestre da Gravidez
4.
J Environ Health Sci Eng ; 17(2): 969-978, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32030167

RESUMO

Recently, increasing evidences have shown that the exposure to phthalates can adversely affect health status of pregnant women and their newborns. However, only a limited number of studies have investigated the concentrations of these compounds in the body fluids of pregnant women. In the present study, we aimed to evaluate the concentrations of phthalate metabolites in urinary samples of pregnant women in correlation with the population characteristics and different lifestyle factors. The study was conducted in 2018-2019 and urinary samples were taken from 121 pregnant women during their first pregnancy trimester who lived in Isfahan, Iran. The concentrations of monobutyl phthalate (MBP), mono-benzyl phthalate (MBzP), mono-2-ethylhexyl phthalate (MEHP), and mono (2-ethyl-5hydroxyhexyl) phthalate (MEHHP) metabolites in urinary samples were determined by gas chromatography mass spectrometry (GC/MS). The socio-demographic profile of the participants (maternal education, age, family income, pre-pregnancy BMI), their lifestyle information (smoking habit, food pattern, and physical activity), cleaning products use data (cosmetic and household cleaning products) were collected by the use of PERSIAN birth cohort questionnaire. MBzP, MBP, MEHP, and MEHHP were detected in 100% of participated pregnant women with the mean concentration of 342.5 ± 193.8, 308.5 ± 229.4, 126.5 ± 118.3, and 866.5 ± 307.6 µg/g creatinine, respectively. Significant correlations were observed between the mean concentration of urinary phthalate metabolites with the following variables: using plastic packaging (for bread, lemon juice, pickle, leftover, and water), lower physical activity, passive smoking exposure during pregnancy (p value<0.05). Furthermore, the pre-pregnancy BMI (r = 0.27, r = 0.3, r = 0.26, and r = 0.26), use of the household cleaning products (r = 0.2, r = 0.22, r = 0.3, and r = 0.26), utilize of the cosmetic products (r = 0.46, r = 0.48, r = 0.49, and r = 0.54), and passive smoking status (r = 0.5, r = 0.44, r = 0.44, and r = 0.26) directly correlated with the urinary concentrations of MBP, MBzP, MEHP, and MEHHP, respectively. No significant association was seen between the concentration of urinary phthalate metabolites with the maternal education level and family income. According to our findings, higher amounts of phthalate metabolites were detected in urinary samples of pregnant women who were passive smokers, or had higher pre-pregnancy BMI and lower physical activity, as well as those women who used higher amounts of cosmetic and household cleaning products, or used plastic packaging for food and non-food products.

5.
Chemosphere ; 197: 375-381, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29407808

RESUMO

Volatile organic compounds (VOCs) in indoor air have recently raised public concern due to their adverse health effects. One of hazardous VOC is Formaldehyde which can cause sensory irritation and induce nasopharyngeal cancer. The aim of this study was to investigate potted plant-soil system ability in formaldehyde removal from indoor air. We applied one of common interior plant from the palm species, Chamaedorea elegans, inside a chamber under the controlled environment. Entire plant, growing media and roots contribution in formaldehyde were evaluated by continuously introduction of different concentrations of formaldehyde into the chamber (0.66-16.4 mg m-3) each over a 48-h period. Our findings showed that the plant efficiently removed formaldehyde from polluted air by 65-100%, depending on the inlet concentrations, for a long time exposure. A maximum elimination capacity of 1.47 mg/m2. h was achieved with an inlet formaldehyde concentration of 14.6 mg m-3. The removal ratio of areal part to pot soil and roots was 2.45:1 (71%: 29%). The plants could remove more formaldehyde in light rather than dark environment. Concentrations up to 16.4 mg m-3 were not high enough to affect the plants growth. However, a trivial decrease in chlorophyll content, carotenoid and water content of the treated plants was observed compared to the control plants. Thus, the palm species tested here showed high tolerance and good potential of formaldehyde removal from interior environments. Therefore, phytoremediation of VOCs from indoor air by the ornamental potted plants is an effective method which can be economically applicable in homes and offices.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Biodegradação Ambiental , Plantas/metabolismo , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/metabolismo , Ambiente Controlado , Formaldeído/análise , Projetos Piloto , Solo , Compostos Orgânicos Voláteis/metabolismo
6.
J Environ Health Sci Eng ; 16(2): 159-170, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30728988

RESUMO

BACKGROUND: This study investigated the effect of organic loading rate (OLR) and NaCl concentration on biohydrogen production by preheated anaerobic sludge in a lab scale anaerobic sequencing batch reactor (ASBR) fed with glucose during long time operation. METHODS: During ASBR operation, the OLR was increased in steps from 0.5 to 5 g glucose/L.d and NaCl addition started at an OLR of 5 g glucose/L.d, to obtain NaCl concentrations in the reactor in the range of 0.5-30 g/L. RESULTS: With an increasing OLR from 0.5 to 5 g glucose/L.d, the biohydrogen yield increased and reached 0.8 ± 0.4 mol H2/mol glucose at an OLR of 5 g glucose/L.d. A NaCl concentration of 0.5 g/L resulted in a higher yield of biohydrogen (1.1 ± 0.2 mol H2/mol glucose). Concentrations above 0.5 g/L NaCl led to decreasing biohydrogen yield and the lowest yield (0.3 ± 0.1 mol H2/mol glucose) was obtained at 30 g/L of NaCl. The mass balance errors for C, H, and O in all constructed stoichiometric reactions were below 5%. CONCLUSIONS: The modified Monod model indicated that r (H2)max and Ccrit values were 23.3 mL H2/g VSS/h and 119.9 g/L, respectively. Additionally, ASBR operation at high concentrations of NaCl shifted the metabolic pathway from acidogenic toward solventogenic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA