Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 284(9): 5977-85, 2009 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-19106093

RESUMO

Human carbamoyl phosphate synthetase (hCPS) has evolved critical features that allow it to remove excess and potentially neurotoxic ammonia via the urea cycle, including use of only free ammonia as a nitrogen donor, a K(m) for ammonia 100-fold lower than for CPSs that also use glutamine as a nitrogen donor, and required allosteric activation by N-acetylglutamate (AGA), a sensor of excess amino acids. The recent availability of a Schizosaccharomyces pombe expression system for hCPS allowed us to utilize protein engineering approaches to elucidate the distinctive hCPS properties. Although the site of AGA interaction is not defined, it is known that the binding of AGA to CPS leads to a conformational change in which a pair of cysteine side chains become proximate and can then be selectively induced to undergo disulfide bonding. We analyzed the response of hCPS cysteine mutants to thiol-specific reagents and identified Cys-1327 and Cys-1337 as the AGA-responsive proximate cysteines. Possibly two of the features unique to urea-specific CPSs, relative to other CPSs (the conserved Cys-1327/Cys-1337 pair and the occurrence at very high concentrations in the liver mitochondrial matrix) co-evolved to provide buffering against reactive oxygen species. Reciprocal mutation analysis of Escherichia coli CPS (eCPS), creating P909C and G919C and establishing the ability of these engineered cysteine residues to share a disulfide bond, indicated an eCPS conformational change at least partly similar to the hCPS conformational change induced by AGA. These findings strongly suggested an alternative eCPS conformation relative to the single crystal conformation thus far identified.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Cisteína/química , Cisteína/metabolismo , Glutamatos/farmacologia , Reagentes de Sulfidrila/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Carbamoil-Fosfato Sintase (Amônia)/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
2.
Protein Sci ; 14(1): 37-44, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15576558

RESUMO

Carbamoyl phosphate synthetase synchronizes the utilization of two ATP molecules at duplicated ATP-grasp folds to catalyze carbamoyl phosphate formation. To define the dedicated functional role played by each of the two ATP sites, we have carried out pulse/labeling studies using the synthetases from Aquifex aeolicus and Methanococcus jannaschii, hyperthermophilic organisms that encode the two ATP-grasp folds on separate subunits. These studies allowed us to differentially label each active site with [gamma-(32)P]ATP and determine the fate of the labeled gamma-phosphate in the synthetase reaction. Our results provide the first direct demonstration that enzyme-catalyzed transfer of phosphate from ATP to carbamate occurs on the more C-terminal of the two ATP-grasp folds. These findings rule out one mechanism proposed for carbamoyl phosphate synthetase, where one ATP acts as a molecular switch, and provide additional support for a sequential reaction mechanism where the gamma-phosphate groups of both ATP molecules are transferred to reactants. CP synthesis by subunit C in our single turnover pulse/chase assays did not require subunit N, but subunit N was required for detectable CP synthesis in the traditional continuous assay. These findings suggest that cross-talk between domain N and C is required for product release from subunit C.


Assuntos
Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil-Fosfato/síntese química , Trifosfato de Adenosina/química , Bactérias/enzimologia , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/isolamento & purificação , Catálise , Ativação Enzimática , Mathanococcus/enzimologia , Dobramento de Proteína , Estrutura Terciária de Proteína
3.
Protein Sci ; 13(2): 466-75, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14718657

RESUMO

Synthesis of carbamoyl phosphate by carbamoyl phosphate synthetase (CPS) requires the coordinated utilization of two molecules of ATP per reaction cycle on duplicated nucleotide-binding sites (N and C). To clarify the contributions of sites N and C to the overall reaction, we carried out site-directed mutagenesis aimed at changing the substrate specificity of either of the two sites from ATP to GTP. Mutant design was based in part on an analysis of the nucleotide-binding sites of succinyl-CoA synthetases, which share membership in the ATP-grasp family with CPS and occur as GTP- and ATP-specific isoforms. We constructed and analyzed Escherichia coli CPS single mutations A144Q, D207A, D207N, S209A, I211S, P690Q, D753A, D753N, and F755A, as well as combinations thereof. All of the mutants retained ATP specificity, arguing for a lack of plasticity of the ATP sites of CPS with respect to nucleotide recognition. GTP-specific ATP-grasp proteins appear to accommodate this substrate by a displacement of the base relative to the ATP-bound state, an interaction that is precluded by the architecture of the potassium-binding loop in CPS. Analysis of the ATP-dependent kinetic parameters revealed that mutation of several residues conserved in ATP-grasp proteins and CPSs had surprisingly small effects, whereas constructs containing either A144Q or P690Q exerted the strongest effects on ATP utilization. We propose that these mutations affect proper movement of the lids covering the active sites of CPS, and interfere with access of substrate.


Assuntos
Trifosfato de Adenosina/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Proteínas de Transporte/química , Guanosina Trifosfato/metabolismo , Adenina/metabolismo , Animais , Sítios de Ligação , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Columbidae , Sequência Conservada/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Cinética , Proteínas de Membrana , Modelos Moleculares , Mutação/genética , Conformação Proteica , Especificidade por Substrato , Suínos
4.
J Biol Chem ; 278(29): 26722-6, 2003 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-12738780

RESUMO

Depending on their physiological role, carbamoyl phosphate synthetases (CPSs) use either glutamine or free ammonia as the nitrogen donor for carbamoyl phosphate synthesis. Sequence analysis of known CPSs indicates that, regardless of whether they are ammonia- or glutamine-specific, all CPSs contain the structural equivalent of a triad-type glutamine amidotransferase (GAT) domain. In ammonia-specific CPSs, such as those of rat or human, the catalytic inactivity of the GAT domain can be rationalized by the substitution of the Triad cysteine residue by serine (1). The ammonia-specific CPS of Rana catesbeiana (fCPS) presents an interesting anomaly in that, despite its retention of the entire catalytic triad (2) and almost all other residues conserved in Triad GATs, it is unable to utilize glutamine as a nitrogen-donating substrate (3). Based on our earlier work with the glutamine-utilizing E. coli CPS (eCPS), we have targeted residues Lys258 and Glu261 in the fCPS GAT domain as critical for preventing GAT function. Previously we have shown that substitution of the corresponding residues in eCPS by their fCPS counterparts (Leu --> Lys and Gln --> Glu) resulted in complete loss of GAT function in eCPS (3). To examine the role of these residues in the fCPS GAT component, we have cloned the full-length fCPS gene from R. catesbeiana liver. Here we report the first heterologous expression of an ammonia-specific CPS and show that a single mutation of the frog enzyme, K258L, yields a gain of glutaminase function.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Glutaminase/genética , Glutaminase/metabolismo , Rana catesbeiana/genética , Rana catesbeiana/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Carbamoil-Fosfato Sintase (Amônia)/química , Clonagem Molecular , DNA Recombinante/genética , Humanos , Cinética , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Arch Biochem Biophys ; 407(1): 1-9, 2002 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-12392708

RESUMO

The ATP-grasp fold is found in enzymes that catalyze the formation of an amide bond and occurs twice in carbamoyl phosphate synthetase. We have used site-directed mutagenesis to further define the relationship of these ATP folds to the ATP-grasp family and to probe for distinctions between the two ATP sites. Mutations at D265 and D810 severely diminished activity, consistent with consensus ATP-grasp roles of facilitating the transfer of the gamma-phosphate group of ATP. H262N was inactive whereas H807N, the corresponding mutation in the second ATP domain, exhibited robust activity, suggesting that these residues were not involved in the ATP-grasp function common to both domains. Mutations at I316 were somewhat catalytically impaired and were structurally unstable, consistent with a consensus role of interaction with the adenine and/or ribose moiety of ATP. L229G was too unstable to be purified and characterized. S228A showed essentially wild-type behavior.


Assuntos
Trifosfato de Adenosina/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante) , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/química , Análise Mutacional de DNA , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química
6.
J Biol Chem ; 277(47): 45466-72, 2002 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-12244118

RESUMO

Although carbamoyl-phosphate synthetases (CPSs) share sequence identity, multidomain structure, and reaction mechanism, they have varying physiological roles and allosteric effectors. Escherichia coli CPS (eCPS) provides CP for both arginine and pyrimidine nucleotide biosynthesis and is allosterically regulated by metabolites from both pathways, with inhibition by UMP and activation by IMP and ornithine. The arginine-specific CPS from Saccharomyces cerevisiae (sCPS), however, apparently responds to no allosteric effectors. We have designed and analyzed a chimeric CPS (chCPS, in which the C-terminal 136 residues of eCPS were replaced by the corresponding residues of sCPS) to define the structural basis for the allosteric nonresponsiveness of sCPS and thereby provide insight into the mechanism for allosteric selectivity and responsiveness in the other CPSs. Surprisingly, ornithine and UMP each had a significant effect on chCPS activity, and did so at concentrations that were similar to those effective for eCPS. We further found that sCPS bound both UMP and IMP and that chCPS bound IMP, although none of these interactions led to changes in enzymatic activity. These findings strongly suggest that the nonresponsive sCPS is not able to communicate occupancy of the allosteric site to the active site but does contain a latent allosteric interaction domain.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/isolamento & purificação , Escherichia coli/enzimologia , Escherichia coli/genética , Humanos , Inosina Monofosfato/metabolismo , Estrutura Molecular , Ornitina/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/isolamento & purificação , Uridina Monofosfato/metabolismo , Uridina Trifosfato/metabolismo
7.
J Biol Chem ; 277(9): 7231-8, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11756425

RESUMO

Carbamoyl phosphate synthetases (CPSs) utilize either glutamine or ammonia for the ATP-dependent generation of carbamoyl phosphate. In glutamine-utilizing CPSs (e.g. the single Escherichia coli CPS and mammalian CPS II), the hydrolysis of glutamine to yield ammonia is catalyzed at a triad-type glutamine amidotransferase domain. Non-glutamine-utilizing CPSs (e.g. rat and human CPS I), lacking the catalytic cysteine residue, can generate carbamoyl phosphate only in the presence of free ammonia. Frog CPS I (fCPS I), unlike mammalian CPS Is, retains most of the glutamine amidotransferase residues conserved in glutamine-utilizing CPSs, including an intact catalytic triad, and could therefore be expected to use glutamine. Our work with native fCPS I provides the first demonstration of the inability of this enzyme to bind/utilize glutamine. To determine why fCPS I is unable to utilize glutamine, we compared sequences of glutamine-using and non-glutamine-using CPSs to identify residues that are present or conservatively substituted in all glutamine-utilizing CPSs but absent in fCPS I. We constructed the site-directed mutants Q273E, L270K, Q273E/N240S, and Q273E/L270K in E. coli CPS and have determined that simultaneous occurrence of the two substitutions, Gln-->Glu and Leu-->Lys, found in the frog CPS I glutamine amidotransferase domain are sufficient to eliminate glutamine utilization by the E. coli enzyme.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Sequência de Aminoácidos , Amônia/química , Animais , Sítios de Ligação , Western Blotting , Cisteína/química , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Ácido Glutâmico/química , Glutamina/química , Humanos , Cinética , Leucina/química , Lisina/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ranidae , Ratos , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA