Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1463, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233478

RESUMO

Histidine residues contribute to numerous molecular interactions, owing to their structure with the ionizable aromatic side chain with pKa close to the physiological pH. Herein, we studied how the two histidine residues, His115 and His160 of the catalytic subunit of human protein kinase CK2, affect the binding of the halogenated heterocyclic ligands at the ATP-binding site. Thermodynamic studies on the interaction between five variants of hCK2α (WT protein and four histidine mutants) and three ionizable bromo-benzotriazoles and their conditionally non-ionizable benzimidazole counterparts were performed with nanoDSF, MST, and ITC. The results allowed us to identify the contribution of interactions involving the particular histidine residues to ligand binding. We showed that despite the well-documented hydrogen bonding/salt bridge formation dragging the anionic ligands towards Lys68, the protonated His160 also contributes to the binding of such ligands by long-range electrostatic interactions. Simultaneously, His 115 indirectly affects ligand binding, placing the hinge region in open/closed conformations.


Assuntos
Caseína Quinase II , Histidina , Humanos , Histidina/metabolismo , Ligação Proteica , Caseína Quinase II/metabolismo , Ligantes , Sítios de Ligação , Domínio Catalítico , Trifosfato de Adenosina/metabolismo , Concentração de Íons de Hidrogênio
2.
Acta Biochim Pol ; 70(4): 951-954, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851507

RESUMO

Assessing inorganic phosphate levels seems crucial in deciphering the biochemical state of organisms or tissues. The concentration of inorganic phosphate in blood is an order of magnitude smaller than in tissues and, on top of that, it is dynamically used to fill temporary gaps in tissues. This is the reason blood inorganic phosphate level is considered a poor proxy for tissue levels. Therefore, tissue biopsy seems to be the dominant method when assessing inorganic phosphate levels for instance in muscles. In this study, we attempted to derive a non-invasive biomarker for phosphate tissue levels. We analyzed surface electromyography signals taken during 31P spectroscopy of leg muscles in five adult pigs. We induced hypophosphatemia via 20 minutes-long hyperventilation. It turned out that the proportion of the amplitude of the low frequency band and the high frequency band is significantly (p=0.002) correlated with the relative phosphate levels. The electromyographic signal did not correlate significantly with pCO2 levels in the blood, suggesting that the changes in the signal are a result of inorganic phosphate levels, not hyperventilation. The results might lead to the development of a real-time phosphate fluctuations measurement procedure.


Assuntos
Músculos , Fosfatos , Animais , Suínos , Eletromiografia/métodos , Espectroscopia de Ressonância Magnética/métodos
3.
Sci Rep ; 13(1): 9972, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340059

RESUMO

Defects in ATP synthase functioning due to the substitutions in its two mitochondrially encoded subunits a and 8 lead to untreatable mitochondrial diseases. Defining the character of variants in genes encoding these subunits is challenging due to their low frequency, heteroplasmy of mitochondrial DNA in patients' cells and polymorphisms of mitochondrial genome. We successfully used yeast S. cerevisiae as a model to study the effects of variants in MT-ATP6 gene and our research led to understand how eight amino acid residues substitutions impact the proton translocation through the channel formed by subunit a and c-ring of ATP synthase at the molecular level. Here we applied this approach to study the effects of the m.8403T>C variant in MT-ATP8 gene. The biochemical data from yeast mitochondria indicate that equivalent mutation is not detrimental for the yeast enzyme functioning. The structural analysis of substitutions in subunit 8 introduced by m.8403T>C and five other variants in MT-ATP8 provides indications about the role of subunit 8 in the membrane domain of ATP synthase and potential structural consequences of substitutions in this subunit.


Assuntos
ATPases Mitocondriais Próton-Translocadoras , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Trifosfato de Adenosina/metabolismo
4.
Biochem J ; 480(8): 495-520, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37022297

RESUMO

Isoprenoids, including dolichols (Dols) and polyprenols (Prens), are ubiquitous components of eukaryotic cells. In plant cells, there are two pathways that produce precursors utilized for isoprenoid biosynthesis: the mevalonate (MVA) pathway and the methylerythritol phosphate (MEP) pathway. In this work, the contribution of these two pathways to the biosynthesis of Prens and Dols was addressed using an in planta experimental model. Treatment of plants with pathway-specific inhibitors and analysis of the effects of various light conditions indicated distinct biosynthetic origin of Prens and Dols. Feeding with deuteriated, pathway-specific precursors revealed that Dols, present in leaves and roots, were derived from both MEP and MVA pathways and their relative contributions were modulated in response to precursor availability. In contrast, Prens, present in leaves, were almost exclusively synthesized via the MEP pathway. Furthermore, results obtained using a newly introduced here 'competitive' labeling method, designed so as to neutralize the imbalance of metabolic flow resulting from feeding with a single pathway-specific precursor, suggest that under these experimental conditions one fraction of Prens and Dols is synthesized solely from endogenous precursors (deoxyxylulose or mevalonate), while the other fraction is synthesized concomitantly from endogenous and exogenous precursors. Additionally, this report describes a novel methodology for quantitative separation of 2H and 13C distributions observed for isotopologues of metabolically labeled isoprenoids. Collectively, these in planta results show that Dol biosynthesis, which uses both pathways, is significantly modulated depending on pathway productivity, while Prens are consistently derived from the MEP pathway.


Assuntos
Arabidopsis , Dolicóis , Dolicóis/metabolismo , Poliprenois/metabolismo , Ácido Mevalônico/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Terpenos/metabolismo
5.
Sci Rep ; 12(1): 18964, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347916

RESUMO

CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.


Assuntos
Halogênios , Proteínas , Ligantes , Eletricidade Estática , Halogênios/química , Ligação Proteica , Termodinâmica , Proteínas/química , Ligação de Hidrogênio , Cristalografia por Raios X
6.
Plant Cell Environ ; 45(2): 479-495, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34778961

RESUMO

Dolichols (Dols), ubiquitous components of living organisms, are indispensable for cell survival. In plants, as well as other eukaryotes, Dols are crucial for post-translational protein glycosylation, aberration of which leads to fatal metabolic disorders in humans and male sterility in plants. Until now, the mechanisms underlying Dol accumulation remain elusive. In this study, we have analysed the natural variation of the accumulation of Dols and six other isoprenoids among more than 120 Arabidopsis thaliana accessions. Subsequently, by combining QTL and GWAS approaches, we have identified several candidate genes involved in the accumulation of Dols, polyprenols, plastoquinone and phytosterols. The role of two genes implicated in the accumulation of major Dols in Arabidopsis-the AT2G17570 gene encoding a long searched for cis-prenyltransferase (CPT3) and the AT1G52460 gene encoding an α/ß-hydrolase-is experimentally confirmed. These data will help to generate Dol-enriched plants which might serve as a remedy for Dol-deficiency in humans.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Dolicóis/metabolismo , Hidrolases/genética , Transferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dolicóis/genética , Hidrolases/metabolismo , Transferases/metabolismo
7.
Sci Rep ; 11(1): 23701, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34880390

RESUMO

4,5,6,7-Tetrabromo-1H-benzotriazole is widely used as the reference ATP-competitive inhibitor of protein kinase CK2. Herein, we study its new analogs: 5,6-diiodo- and 5,6-diiodo-4,7-dibromo-1H-benzotriazole. We used biophysical (MST, ITC) and biochemical (enzymatic assay) methods to describe the interactions of halogenated benzotriazoles with the catalytic subunit of human protein kinase CK2 (hCK2α). To trace the biological activity, we measured their cytotoxicity against four reference cancer cell lines and the effect on the mitochondrial inner membrane potential. The results obtained lead to the conclusion that iodinated compounds are an attractive alternative to brominated ones. One of them retains the cytotoxicity against selected cancer cell lines of the reference TBBt with a smaller side effect on mitochondrial activity. Both iodinated compounds are candidate leaders in the further development of CK2 inhibitors.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Triazóis/farmacologia , Biomarcadores , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Análise Espectral , Triazóis/química , Leveduras/efeitos dos fármacos , Leveduras/metabolismo
8.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070615

RESUMO

Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay.


Assuntos
Caseína Quinase II/química , Halogenação , Compostos Heterocíclicos/síntese química , Fenilenodiaminas/química , Trifosfato de Adenosina/química , Domínio Catalítico , Cromatografia Líquida de Alta Pressão/métodos , Fluorometria/métodos , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Simulação de Acoplamento Molecular
9.
Molecules ; 26(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918595

RESUMO

Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is a positive-strand RNA virus that causes severe respiratory syndrome in humans, which is now referred to as coronavirus disease 2019 (COVID-19). Since December 2019, the new pathogen has rapidly spread globally, with over 65 million cases reported to the beginning of December 2020, including over 1.5 million deaths. Unfortunately, currently, there is no specific and effective treatment for COVID-19. As SARS-CoV-2 relies on its spike proteins (S) to bind to a host cell-surface receptor angiotensin-converting enzyme-2(ACE2), and this interaction is proved to be responsible for entering a virus into host cells, it makes an ideal target for antiviral drug development. In this work, we design three very short peptides based on the ACE2 sequence/structure fragments, which may effectively bind to the receptor-binding domain (RBD) of S protein and may, in turn, disrupt the important virus-host protein-protein interactions, blocking early steps of SARS-CoV-2 infection. Two of our peptides bind to virus protein with affinity in nanomolar range, and as very short peptides have great potential for drug development.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Desenho de Fármacos , Humanos , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/uso terapêutico , Ligação Proteica , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Tratamento Farmacológico da COVID-19
10.
J Phys Chem B ; 125(10): 2491-2503, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33689348

RESUMO

Binding of a family of brominated benzotriazoles to the catalytic subunit of human protein kinase CK2 (hCK2α) was used as a model system to assess the contribution of halogen bonding to protein-ligand interaction. CK2 is a constitutively active pleiotropic serine/threonine protein kinase that belongs to the CMGC group of eukaryotic protein kinases (EPKs). Due to the addiction of some cancer cells, CK2 is an attractive and well-characterized drug target. Halogenated benzotriazoles act as ATP-competitive inhibitors with unexpectedly good selectivity for CK2 over other EPKs. We have characterized the interaction of bromobenzotriazoles with hCK2α by X-ray crystallography, low-volume differential scanning fluorimetry, and isothermal titration calorimetry. Properties of free ligands in solution were additionally characterized by volumetric and RT-HPLC measurements. Thermodynamic data indicate that the affinity increases with bromo substitution, with greater contributions from 5- and 6-substituents than 4- and 7-substituents. Except for 4,7-disubstituted compounds, the bromobenzotriazoles adopt a canonical pose with the triazole close to lysine 68, which precludes halogen bonding. More highly substituted benzotriazoles adopt many additional noncanonical poses, presumably driven by a large hydrophobic contribution to binding. Some noncanonical ligand orientations allow the formation of halogen bonds with the hinge region. Consistent with a predominantly hydrophobic interaction, the isobaric heat capacity decreases upon ligand binding, the more so the higher the substitution.


Assuntos
Caseína Quinase II , Halogênios , Caseína Quinase II/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligantes , Ligação Proteica , Termodinâmica
11.
J Mol Med (Berl) ; 99(3): 415-423, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33474647

RESUMO

REV3L encodes a catalytic subunit of DNA polymerase zeta (Pol zeta) which is essential for the tolerance of DNA damage by inducing translesion synthesis (TLS). So far, the only Mendelian disease associated with REV3L was Moebius syndrome (3 patients with dominant REV3L mutations causing monoallelic loss-of-function were reported). We describe a homozygous ultra-rare REV3L variant (T2753R) identified with whole exome sequencing in a child without Moebius syndrome but with developmental delay, hypotrophy, and dysmorphic features who was born to healthy parents (heterozygous carriers of the variant). The variant affects the amino acid adjacent to functionally important KKRY motif. By introducing an equivalent mutation (S1192R) into the REV3 gene in yeasts, we showed that, whereas it retained residual function, it caused clear dysfunction of TLS in the nucleus and instability of mitochondrial genetic information. In particular, the mutation increased UV sensitivity measured by cell survival, decreased both the spontaneous (P < 0.005) and UV-induced (P < 0.0001) mutagenesis rates of nuclear DNA and increased the UV-induced mutagenesis rates of mitochondrial DNA (P < 0.0005). We propose that our proband is the first reported case of a REV3L associated disease different from Moebius syndrome both in terms of clinical manifestations and inheritance (autosomal recessive rather than dominant). KEY MESSAGES: First description of a human recessive disorder associated with a REV3L variant. A study in yeast showed that the variant affected the enzymatic function of the protein. In particular, it caused increased UV sensitivity and abnormal mutagenesis rates.


Assuntos
Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Neoplasias Primárias Múltiplas/genética , Síndromes Neoplásicas Hereditárias/genética , Nevo Pigmentado/genética , Mutação Puntual , Neoplasias Cutâneas/genética , Aldose-Cetose Isomerases/genética , Domínio Catalítico/genética , Pré-Escolar , DNA/metabolismo , DNA Fúngico/genética , DNA Mitocondrial/genética , DNA Mitocondrial/efeitos da radiação , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/fisiologia , Deficiências do Desenvolvimento/patologia , Feminino , Homozigoto , Humanos , Masculino , Síndrome de Möbius/genética , Modelos Moleculares , Mutagênese/efeitos da radiação , Linhagem , Fenótipo , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade , Raios Ultravioleta/efeitos adversos , Sequenciamento do Exoma
12.
Front Genet ; 11: 560248, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193643

RESUMO

BACKGROUND: Red cell pyruvate kinase deficiency (PKD) is a defect of glycolysis causing congenital non-spherocytic hemolytic anemia. PKD is transmitted as an autosomal recessive trait. The clinical features of PKD are highly variable, from mild to life-threatening anemia which can lead to death in the neonatal period. Most patients with PKD must receive regular transfusions in early childhood and as a consequence suffer from iron overloading. PATIENT: Here, we report a Polish family with life-threatening hemolytic anemia of unknown etiology. Whole exome sequencing identified two heterozygous mutations, c.1529 G > A (p.R510Q) and c.1495 T > C (p.S499P) in the PKLR gene. Molecular modeling showed that the both PKLR mutations are responsible for major disturbance of the protein structure and functioning. Despite frequent transfusions the patients do not show any signs of iron overload and hepcidin, a major regulator of iron uptake, is undetectable in their serum. The patients were homozygous for the rs855791 variant of the TMPRSS6 gene which has earlier been shown to down-regulate iron absorption and accumulation. CONCLUSION: The lack of iron overload despite a reduced level of hepcidin in two transfusion-dependent PKD patients suggests the existence of a hepcidin-independent mechanism of iron regulation preventing iron overloading.

13.
Nucleic Acids Res ; 48(16): 9387-9405, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32785623

RESUMO

Template-independent terminal ribonucleotide transferases (TENTs) catalyze the addition of nucleotide monophosphates to the 3'-end of RNA molecules regulating their fate. TENTs include poly(U) polymerases (PUPs) with a subgroup of 3' CUCU-tagging enzymes, such as CutA in Aspergillus nidulans. CutA preferentially incorporates cytosines, processively polymerizes only adenosines and does not incorporate or extend guanosines. The basis of this peculiar specificity remains to be established. Here, we describe crystal structures of the catalytic core of CutA in complex with an incoming non-hydrolyzable CTP analog and an RNA with three adenosines, along with biochemical characterization of the enzyme. The binding of GTP or a primer with terminal guanosine is predicted to induce clashes between 2-NH2 of the guanine and protein, which would explain why CutA is unable to use these ligands as substrates. Processive adenosine polymerization likely results from the preferential binding of a primer ending with at least two adenosines. Intriguingly, we found that the affinities of CutA for the CTP and UTP are very similar and the structures did not reveal any apparent elements for specific NTP binding. Thus, the properties of CutA likely result from an interplay between several factors, which may include a conformational dynamic process of NTP recognition.


Assuntos
Proteínas de Bactérias/genética , Citosina/metabolismo , RNA Nucleotidiltransferases/genética , RNA/genética , Aspergillus nidulans/genética , Proteínas de Bactérias/química , Sítios de Ligação/genética , Cristalografia por Raios X , Citosina/química , Modelos Moleculares , Poli A/química , Poli A/genética , RNA Nucleotidiltransferases/química , Especificidade por Substrato
14.
IUBMB Life ; 72(6): 1250-1261, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32364671

RESUMO

A series of halogenated derivatives of natural flavonoids: baicalein and chrysin were designed and investigated as possible ligands for the catalytic subunit of tumor-associated human kinase CK2. Thermal shift assay method, in silico modeling, and high-performance liquid chromatography-derived hydrophobicity together with IC50 values determined in biochemical assay were used to explain the ligand affinity to the catalytic subunit of human protein kinase CK2. Obtained results revealed that substitution of baicalein and chrysin with halogen atom increases their binding affinity to hCK2α, and for 8-chlorochrysin the observed effect is even stronger than for the reference CK2 inhibitor-4,5,6,7-tetrabromo-1H-benzotriazole. The cytotoxic activities of the baicalein and chrysin derivatives in the in vitro model have been evaluated for MV4-11 (human biphenotypic B myelomonocytic leukemia), A549 (human lung adenocarcinoma), LoVo (human colon cancer), and MCF-7 (human breast cancer) as well as on the nontumorigenic human breast epithelial MCF-10A cell lines. Among the baicalein derivatives, the strongest cytotoxic effect was observed for 8-bromobaicalein, which exhibited the highest activity against breast cancer cell line MCF-7 (IC50 10 ± 3 µM). In the chrysin series, the strongest cytotoxic effect was observed for unsubstituted chrysin, which exhibited the highest activity against leukemic cell line MV4-11 (IC50 10 ± 4 µM).


Assuntos
Caseína Quinase II/antagonistas & inibidores , Flavanonas/química , Flavonoides/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Flavanonas/metabolismo , Flavanonas/farmacologia , Flavonoides/metabolismo , Flavonoides/farmacologia , Halogenação , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Inibidores de Proteínas Quinases/metabolismo , Relação Estrutura-Atividade
15.
Front Cell Dev Biol ; 8: 198, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32292783

RESUMO

The specificity of import of peroxisomal matrix proteins is dependent on the targeting signals encoded within their amino acid sequences. Two known import signals, peroxisomal targeting signal 1 (PTS1), positioned at the C-termini and PTS2 located close to N-termini of these proteins are recognized by the Pex5p and Pex7p receptors, respectively. However, in several yeast species, including Saccharomyces cerevisiae, proteins exist that are efficiently imported into peroxisomes despite having neither PTS1 nor PTS2 and for which no other import signal has been determined. An example of such a protein is S. cerevisiae acyl-CoA oxidase (AOx) encoded by the POX1 gene. While it is known that its import is driven by its interaction with the N-terminal segment of Pex5p, which is separate from its C-terminal PTS1-recognizing tetratricopeptide domain, to date, no AOx polypeptide region has been implicated as critical for this interaction, and thus would constitute the long-sought PTS3 signal. Using random mutagenesis combined with a two-hybrid screen, we identified single amino acid residues within the AOx polypeptide that are crucial for this interaction and for the peroxisomal import of this protein. Interestingly, while scattered throughout the primary sequence, these amino acids come close to each other within two domains of the folded AOx. Although the role of one or both of these regions as the PTS3 signal is not finally proven, our data indicate that the signal guiding AOx into peroxisomal matrix is not a linear sequence but a signal patch.

16.
Blood Cells Mol Dis ; 80: 102378, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31670187

RESUMO

Hereditary xerocytosis (HX) is a rare, autosomal dominant congenital hemolytic anemia (CHA) characterized by erythrocyte dehydration with presentation of various degrees of hemolytic anemia. HX is often misdiagnosed as hereditary spherocytosis or other CHA. Here we report three cases of suspected HX and one case of HX associated with ß-thalassemia. Sanger method was used for sequencing cDNA of the PIEZO1 gene. Variants were evaluated for potential pathogenicity by MutationTaster, PROVEAN, PolyPhen-2 and M-CAP software, and by molecular modeling. Four different variants in the PIEZO1 gene were found, including three substitutions (p.D669H, p.D1566G, p.T1732 M) and one deletion (p.745delQ). In addition, in the patient with the p.T1732 M variant we detected a 12-nucleotide deletion in the ß-globin gene leading to a deletion of amino acids 62AHGK65. The joint presence of mutations in two different genes connected with erythrocytes markedly aggravated the presentation of the disease. Bioinformatic analysis and molecular modeling strongly indicated likely deleterious effects of all four PIEZO1 variants, but co-segregation analysis showed that the p.D1566G substitution is in fact non-pathogenic. Identification of causative mutations should improve the diagnosis and management of HX and provide a new insight into the molecular basis of this complex red blood cell abnormality.


Assuntos
Anemia Hemolítica Congênita/diagnóstico , Anemia Hemolítica Congênita/genética , Estudos de Associação Genética , Hidropisia Fetal/diagnóstico , Hidropisia Fetal/genética , Canais Iônicos/genética , Mutação , Fenótipo , Globinas beta/genética , Adolescente , Alelos , Anemia Hemolítica Congênita/sangue , Pré-Escolar , Análise Mutacional de DNA , Índices de Eritrócitos , Eritrócitos Anormais/patologia , Feminino , Genótipo , Humanos , Hidropisia Fetal/sangue , Canais Iônicos/química , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Relação Estrutura-Atividade , Globinas beta/química
17.
Biosci Rep ; 39(12)2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31742586

RESUMO

The cytotoxic effect of 5-fluorouracil (5-FU) on yeast cells is thought to be mainly via a misincorporation of fluoropyrimidines into both RNA and DNA, not only DNA damage via inhibition of thymidylate synthase (TYMS) by fluorodeoxyuridine monophosphate (FdUMP). However, some studies on Saccharomyces cerevisiae show a drastic decrease in ATP concentration under oxidative stress, together with a decrease in concentration of other tri- and diphosphates. This raises a question if hydrolysis of 5-fluoro-2-deoxyuridine diphosphate (FdUDP) under oxidative stress could not lead to the presence of FdUMP and the activation of so-called 'thymine-less death' route. We attempted to answer this question with in silico modeling of 5-FU metabolic pathways, based on new experimental results, where the stages of intracellular metabolism of 5-FU in Saccharomyces cerevisiae were tracked by a combination of 19F and 31P NMR spectroscopic study. We have identified 5-FU, its nucleosides and nucleotides, and subsequent di- and/or triphosphates. Additionally, another wide 19F signal, assigned to fluorinated unstructured short RNA, has been also identified in the spectra. The concentration of individual metabolites was found to vary substantially within hours, however, the initial steady-state was preserved only for an hour, until the ATP concentration dropped by a half, which was monitored independently via 31P NMR spectra. After that, the catabolic process leading from triphosphates through monophosphates and nucleosides back to 5-FU was observed. These results imply careful design and interpretation of studies in 5-FU metabolism in yeast.


Assuntos
Trifosfato de Adenosina/metabolismo , Simulação por Computador , Fluoruracila/metabolismo , Ressonância Magnética Nuclear Biomolecular , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/genética , Saccharomyces cerevisiae/genética
18.
Sci Rep ; 9(1): 13249, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519943

RESUMO

The nine identified human homologues of E. coli AlkB 2-oxoglutarate (2OG) and Fe(II)-dependent dioxygenase, ALKBH1-8 and FTO, display different substrate specificities and diverse biological functions. Here we discovered the combined overexpression of members of the ALKBH family in head and neck squamous cell carcinomas (HNSCC). We found direct correlation of ALKBH3 and FTO expression with primary HNSCC tumor size. We observed unidentified thus far cytoplasmic localization of ALKBH2 and 5 in HNSCC, suggesting abnormal role(s) of ALKBH proteins in cancer. Further, high expression of ALKBHs was observed not only in HNSCC, but also in several cancerous cell lines and silencing ALKBH expression in HeLa cancer cells resulted in dramatically decreased survival. Considering the discovered impact of high expression of ALKBH proteins on HNSCC development, we screened for ALKBH blockers among newly synthetized anthraquinone derivatives and demonstrated their potential to support standard anticancer therapy.


Assuntos
Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Antraquinonas/farmacologia , Biomarcadores Tumorais/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Idoso , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Biomarcadores Tumorais/genética , Feminino , Seguimentos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Ácidos Cetoglutáricos/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Especificidade por Substrato , Células Tumorais Cultivadas
19.
Sci Rep ; 9(1): 11018, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358826

RESUMO

Numerous inhibitors of protein kinases act on the basis of competition, targeting the ATP binding site. In this work, we present a procedure of rational design of a bi-substrate inhibitor, complemented with biophysical assays. The inhibitors of this type are commonly engineered by combining ligands carrying an ATP-like part with a peptide or peptide-mimicking fragment that determines specificity. Approach presented in this paper led to generation of a specific system for independent screening for efficient ligands and peptides, by means of thermodynamic measurements, that assessed the ability of the identified ligand and peptide to combine into a bi-substrate inhibitor. The catalytic subunit of human protein kinase CK2 was used as the model target. Peptide sequence was optimized using peptide libraries [KGDE]-[DE]-[ST]-[DE]3-4-NH2, originated from the consensus CK2 sequence. We identified KESEEE-NH2 peptide as the most promising one, whose binding affinity is substantially higher than that of the reference RRRDDDSDDD peptide. We assessed its potency to form an efficient bi-substrate inhibitor using tetrabromobenzotriazole (TBBt) as the model ATP-competitive inhibitor. The formation of ternary complex was monitored using Differential Scanning Fluorimetry (DSF), Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC).


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Sequência de Aminoácidos , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Desenho de Fármacos , Humanos , Ligantes , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Termodinâmica
20.
Sci Rep ; 8(1): 15178, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30310110

RESUMO

The relationships between polypeptide composition, sequence, structure and function have been puzzling biologists ever since first protein sequences were determined. Here, we study the statistics of occurrence of all possible pentapeptide sequences in known proteins. To compensate for the non-uniform distribution of individual amino acid residues in protein sequences, we investigate separately all possible permutations of every given amino acid composition. For the majority of permutation groups we find that pentapeptide occurrences deviate strongly from the expected binomial distributions, and that the observed distributions are also characterized by high numbers of outlier sequences. An analysis of identified outliers shows they often contain known motifs and rare amino acids, suggesting that they represent important functional elements. We further compare the pentapeptide composition of regions known to correspond to protein domains with that of non-domain regions. We find that a substantial number of pentapeptides is clearly strongly favored in protein domains. Finally, we show that over-represented pentapeptides are significantly related to known functional motifs and to predicted ancient structural peptides.


Assuntos
Oligopeptídeos/química , Sequência de Aminoácidos , Mutação , Oligopeptídeos/classificação , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA