Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Rep Pract Oncol Radiother ; 27(3): 449-457, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36186702

RESUMO

Background: The purpose of this study was to describe the use of the VIPER software for patient-specific quality assurance (PSQA) of single-isocenter multitarget (SIMT) stereotactic radiosurgery (SRS) plans. Materials and methods: Twenty clinical of intensity-modulated (IMRT) SIMT SRS plans were reviewed. A total of 88 brain metastases were included. Number of lesions per plan and their individual volumes ranged from 2 to 35 and from 0.03 to 32.8 cm3, respectively. Plans were designed with the Eclipse system, and delivered using a Varian CLINAC linac. SRS technique consisted of non-coplanar static-field sliding-window IMRT. Each plan was mapped onto a virtual cylindrical water phantom (VCP) in the Eclipse to calculate a 3D dose distribution (verification plan). The VIPER software reconstructed the 3D dose distribution inside the VCP from the acquired in-air electronic portal image device (EPID) images of the treatment fields. A 3D gamma analysis was used to compare the reconstructed doses to the Eclipse planned doses on the VCP. Gamma passing rates (GPRs) were calculated using 3% global/2 mm criteria and dose thresholds ranged from 10% to 90% of the maximum dose. Results: The averages (± 1 SD) of the 3D GPRs over the 20 SRS plans were: 99.9 ± 0.2%, 99.7 ± 0.3%, 99.6 ± 0.5%, 99.3 ± 0.9%,99.1 ± 1.6%, 99.0 ± 1.6%, and 98.5 ± 3.3%, for dose thresholds of 10%, 20%, 30%, 50%, 70%, 80% and 90% respectively. Conclusions: This work shows the feasibility of the VIPER software for PSQA of SIMT SRS plans, being a reliable alternative to commercially available 2D detector arrays.

2.
Phys Med ; 102: 19-26, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36037748

RESUMO

PURPOSE: To investigate the feasibility of using the free PRIMO Monte Carlo software for independent dose check of cranial SRS plans designed with the Varian HyperArc (HA) technique. MATERIALS AND METHODS: In this study, the PRIMO Monte Carlo software v. 0.3.64.1800 was used with the phase-space files (v. 2, Feb. 27, 2013) provided by Varian for 6 MV flattening-filter-free (FFF) photon beams from a Varian TrueBeam linear accelerator (linac), equipped with a Millennium 120 multileaf collimator (MLC). This configuration was validated by comparing the percentage depth doses (PDDs), lateral profiles and relative output factors (OFs) simulated in a water phantom against measurements for field sizes from 1 × 1 to 40 × 40 cm2. The agreement between simulated and experimental relative dose curves was evaluated using a global (G) gamma index analysis. In addition, the accuracy of PRIMO to model the MLC was investigated (dosimetric leaf gap, tongue and groove, leaf transmission and interleaf leakage). Thirty-five HA SRS plans computed in the Eclipse treatment planning system (TPS) were simulated in PRIMO. The Acuros XB algorithm v. 16.10 (dose to medium) was used in Eclipse. Sixty targets with diameters ranging from 6 to 33 mm were included. Agreement between the dose distributions given by Eclipse and PRIMO was evaluated in terms of 3D global gamma passing rates (GPRs) for the 2 %/2 mm criteria. RESULTS: Average GPR greater than 95 % with the 2 %(G)/1 mm criteria were obtained over the PDD and profiles of each field size. Differences between PRIMO calculated and measured OFs were within 0.5 % in all fields, except for the 1 × 1 cm2 with a discrepancy of 1.5 %. Regarding the MLC modeling in PRIMO, an agreement within 3 % was achieved between calculated and experimental doses. Excellent agreement between PRIMO and Eclipse was found for the 35 HA plans. The 3D global GPRs (2 %/2 mm) for the targets and external patient contour were 99.6 % ± 1.1 % and 99.8 % ± 0.5 %, respectively. CONCLUSIONS: According to the results described in this study, the PRIMO Monte Carlo software, in conjunction with the 6X FFF Varian phase-space files, can be used as secondary dose calculation software to check stereotactic radiosurgery plans from Eclipse using the HyperArc technique.


Assuntos
Radiocirurgia , Humanos , Método de Monte Carlo , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA