Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(12): e4825, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924304

RESUMO

Hirudin from Hirudo medicinalis is a bivalent α-Thrombin (αT) inhibitor, targeting the enzyme active site and exosite-I, and is currently used in anticoagulant therapy along with its simplified analogue hirulog. Haemadin, a small protein (57 amino acids) isolated from the land-living leech Haemadipsa sylvestris, selectively inhibits αT with a potency identical to that of recombinant hirudin (KI = 0.2 pM), with which it shares a common disulfide topology and overall fold. At variance with hirudin, haemadin targets exosite-II and therefore (besides the free protease) it also blocks thrombomodulin-bound αT without inhibiting the active intermediate meizothrombin, thus offering potential advantages over hirudin. Here, we produced in reasonably high yields and pharmaceutical purity (>98%) wild-type haemadin and the oxidation resistant Met5 → nor-Leucine analogue, both inhibiting αT with a KI of 0.2 pM. Thereafter, we used site-directed mutagenesis, spectroscopic, ligand-displacement, and Hydrogen/Deuterium Exchange-Mass Spectrometry techniques to map the αT regions relevant for the interaction with full-length haemadin and with the synthetic N- and C-terminal peptides Haem(1-10) and Haem(45-57). Haem(1-10) competitively binds to/inhibits αT active site (KI = 1.9 µM) and its potency was enhanced by 10-fold after Phe3 → ß-Naphthylalanine exchange. Conversely to full-length haemadin, haem(45-57) displays intrinsic affinity for exosite-I (KD = 1.6 µM). Hence, we synthesized a peptide in which the sequences 1-9 and 45-57 were joined together through a 3-Glycine spacer to yield haemanorm, a highly potent (KI = 0.8 nM) inhibitor targeting αT active site and exosite-I. Haemanorm can be regarded as a novel class of hirulog-like αT inhibitors with potential pharmacological applications.


Assuntos
Hirudinas , Trombina , Hirudinas/genética , Hirudinas/farmacologia , Hirudinas/química , Trombina/química , Trombina/metabolismo , Sequência de Aminoácidos , Peptídeos , Heme
2.
Res Sq ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790553

RESUMO

The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.

3.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37333393

RESUMO

The Partner and Localizer of BRCA2 (PALB2) tumor suppressor is a scaffold protein that links BRCA1 with BRCA2 to initiate homologous recombination (HR). PALB2 interaction with DNA strongly enhances HR efficiency. The PALB2 DNA-binding domain (PALB2-DBD) supports DNA strand exchange, a complex multistep reaction supported by only a few protein families such as RecA-like recombinases or Rad52. The mechanisms of PALB2 DNA binding and strand exchange are unknown. We performed circular dichroism, electron paramagnetic spectroscopy, and small-angle X-ray scattering analyses and determined that PALB2-DBD is intrinsically disordered, even when bound to DNA. The intrinsically disordered nature of this domain was further supported by bioinformatics analysis. Intrinsically disordered proteins (IDPs) are prevalent in the human proteome and have many important biological functions. The complexity of the strand exchange reaction significantly expands the functional repertoire of IDPs. The results of confocal single-molecule FRET indicated that PALB2-DBD binding leads to oligomerization-dependent DNA compaction. We hypothesize that PALB2-DBD uses a chaperone-like mechanism to aid formation and resolution of complex DNA and RNA multichain intermediates during DNA replication and repair. Since PALB2-DBD alone or within the full-length PALB2 is predicted to have strong liquid-liquid phase separation (LLPS) potential, protein-nucleic acids condensates are likely to play a role in complex functionality of PALB2-DBD. Similar DNA-binding intrinsically disordered regions may represent a novel class of functional domains that evolved to function in eukaryotic nucleic acid metabolism complexes.

4.
J Thromb Haemost ; 21(8): 2137-2150, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37037379

RESUMO

BACKGROUND: Oxidative stress contributes to thrombosis in atherosclerosis, inflammation, infection, aging, and malignancy. Oxidant-induced cysteine modifications, including sulfenylation, can act as a redox-sensitive switch that controls protein function. Protein disulfide isomerase (PDI) is a prothrombotic enzyme with exquisitely redox-sensitive active-site cysteines. OBJECTIVES: We hypothesized that PDI is sulfenylated during oxidative stress, contributing to the prothrombotic potential of PDI. METHODS: Biochemical and enzymatic assays using purified proteins, platelet and endothelial cell assays, and in vivo murine thrombosis studies were used to evaluate the role of oxidative stress in PDI sulfenylation and prothrombotic activity. RESULTS: PDI exposure to oxidants resulted in the loss of PDI reductase activity and simultaneously promoted sulfenylated PDI generation. Following exposure to oxidants, sulfenylated PDI spontaneously converted to disulfided PDI. PDI oxidized in this manner was able to transfer disulfides to protein substrates. Inhibition of sulfenylation impaired disulfide formation by oxidants, indicating that sulfenylation is an intermediate during PDI oxidation. Agonist-induced activation of platelets and endothelium resulted in the release of sulfenylated PDI. PDI was also sulfenylated by oxidized low-density lipoprotein (oxLDL). In an in vivo model of thrombus formation, oxLDL markedly promoted platelet accumulation following an arteriolar injury. PDI oxidoreductase inhibition blocked oxLDL-mediated augmentation of thrombosis. CONCLUSION: PDI sulfenylation is a critical posttranslational modification that is an intermediate during disulfide PDI formation in the setting of oxidative stress. Oxidants generated by vascular cells during activation promote PDI sulfenylation, and interference with PDI during oxidative stress impairs thrombus formation.


Assuntos
Isomerases de Dissulfetos de Proteínas , Trombose , Animais , Camundongos , Cisteína/metabolismo , Dissulfetos , Oxidantes , Estresse Oxidativo , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Trombose/metabolismo
5.
Methods ; 214: 8-17, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068599

RESUMO

Disulfide bonds drive protein correct folding, prevent protein aggregation, and stabilize three-dimensional structures of proteins and their assemblies. Dysregulation of this activity leads to several disorders, including cancer, neurodegeneration, and thrombosis. A family of 20+ enzymes, called thiol-isomerases (TIs), oversee this process in the endoplasmic reticulum of human cells to ensure efficacy and accuracy. While the biophysical and biochemical properties of cysteine residues are well-defined, our structural knowledge of how TIs select, interact and process their substrates remains poorly understood. How TIs structurally and functionally respond to changes in redox environment and other post-translational modifications remain unclear, too. We recently developed a workflow for site-specific incorporation of non-canonical amino acids into protein disulfide isomerase (PDI), the prototypical member of TIs. Combined with click chemistry, this strategy enabled us to perform single-molecule biophysical studies of PDI under various solution conditions. This paper details protocols and discusses challenges in performing these experiments. We expect this approach, combined with other emerging technologies in single-molecule biophysics and structural biology, to facilitate the exploration of the mechanisms by which TIs carry out their fascinating but poorly understood roles in humans, especially in the context of thrombosis.


Assuntos
Aminoácidos , Trombose , Humanos , Aminoácidos/metabolismo , Compostos de Sulfidrila/química , Transferência Ressonante de Energia de Fluorescência , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Trombose/metabolismo , Oxirredução
6.
Nucleic Acids Res ; 51(4): 1803-1822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36651285

RESUMO

Assembly of ribosomal subunits into active ribosomal complexes is integral to protein synthesis. Release of eIF6 from the 60S ribosomal subunit primes 60S to associate with the 40S subunit and engage in translation. The dynamics of eIF6 interaction with the uL14 (RPL23) interface of 60S and its perturbation by somatic mutations acquired in Shwachman-Diamond Syndrome (SDS) is yet to be clearly understood. Here, by using a modified strategy to obtain high yields of recombinant human eIF6 we have uncovered the critical interface entailing eight key residues in the C-tail of uL14 that is essential for physical interactions between 60S and eIF6. Disruption of the complementary binding interface by conformational changes in eIF6 disease variants provide a mechanism for weakened interactions of variants with the 60S. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) analyses uncovered dynamic configurational rearrangements in eIF6 induced by binding to uL14 and exposed an allosteric interface regulated by the C-tail of eIF6. Disrupting key residues in the eIF6-60S binding interface markedly limits proliferation of cancer cells, which highlights the significance of therapeutically targeting this interface. Establishing these key interfaces thus provide a therapeutic framework for targeting eIF6 in cancers and SDS.


Assuntos
Fatores de Iniciação em Eucariotos , Humanos , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Fatores de Iniciação em Eucariotos/antagonistas & inibidores , Fatores de Iniciação em Eucariotos/química , Fatores de Iniciação em Eucariotos/metabolismo , Síndrome de Shwachman-Diamond/terapia
7.
J Biol Chem ; 298(8): 102217, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780832

RESUMO

Human protein disulfide isomerase (PDI) is an essential redox-regulated enzyme required for oxidative protein folding. It comprises four thioredoxin domains, two catalytically active (a, a') and two inactive (b, b'), organized to form a flexible abb'a' U-shape. Snapshots of unbound oxidized and reduced PDI have been obtained by X-ray crystallography. Yet, how PDI's structure changes in response to the redox environment and inhibitor binding remains controversial. Here, we used multiparameter confocal single-molecule FRET to track the movements of the two catalytic domains with high temporal resolution. We found that at equilibrium, PDI visits three structurally distinct conformational ensembles, two "open" (O1 and O2) and one "closed" (C). We show that the redox environment dictates the time spent in each ensemble and the rate at which they exchange. While oxidized PDI samples O1, O2, and C more evenly and in a slower fashion, reduced PDI predominantly populates O1 and O2 and exchanges between them more rapidly, on the submillisecond timescale. These findings were not expected based on crystallographic data. Using mutational analyses, we further demonstrate that the R300-W396 cation-π interaction and active site cysteines dictate, in unexpected ways, how the catalytic domains relocate. Finally, we show that irreversible inhibitors targeting the active sites of reduced PDI did not abolish these protein dynamics but rather shifted the equilibrium toward the closed ensemble. This work introduces a new structural framework that challenges current views of PDI dynamics, helps rationalize its multifaceted role in biology, and should be considered when designing PDI-targeted therapeutics.


Assuntos
Isomerases de Dissulfetos de Proteínas , Dobramento de Proteína , Cristalografia por Raios X , Cisteína/química , Humanos , Oxirredução , Isomerases de Dissulfetos de Proteínas/metabolismo
8.
Front Immunol ; 13: 909503, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720299

RESUMO

Thrombotic microangiopathy (TMA) is characterized by microangiopathic hemolytic anemia, thrombocytopenia and organ injury occurring due to endothelial cell damage and microthrombi formation in small vessels. TMA is primary when a genetic or acquired defect is identified, as in atypical hemolytic uremic syndrome (aHUS) or secondary when occurring in the context of another disease process such as infection, autoimmune disease, malignancy or drugs. Differentiating between a primary complement-mediated process and one triggered by secondary factors is critical to initiate timely treatment but can be challenging for clinicians, especially after a kidney transplant due to presence of multiple confounding factors. Similarly, primary membranous nephropathy is an immune-mediated glomerular disease associated with circulating autoantibodies (directed against the M-type phospholipase A2 receptor (PLA2R) in 70% cases) while secondary membranous nephropathy is associated with infections, drugs, cancer, or other autoimmune diseases. Complement activation has also been proposed as a possible mechanism in the etiopathogenesis of primary membranous nephropathy; however, despite complement being a potentially common link, aHUS and primary membranous nephropathy have not been reported together. Herein we describe a case of aHUS due to a pathogenic mutation in complement factor I that developed after a kidney transplant in a patient with an underlying diagnosis of PLA2R antibody associated-membranous nephropathy. We highlight how a systematic and comprehensive analysis helped to define the etiology of aHUS, establish mechanism of disease, and facilitated timely treatment with eculizumab that led to recovery of his kidney function. Nonetheless, ongoing anti-complement therapy did not prevent recurrence of membranous nephropathy in the allograft. To our knowledge, this is the first report of a patient with primary membranous nephropathy and aHUS after a kidney transplant.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Glomerulonefrite Membranosa , Microangiopatias Trombóticas , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Síndrome Hemolítico-Urêmica Atípica/tratamento farmacológico , Síndrome Hemolítico-Urêmica Atípica/genética , Fator I do Complemento/genética , Proteínas do Sistema Complemento/genética , Glomerulonefrite Membranosa/genética , Humanos , Mutação , Microangiopatias Trombóticas/genética
9.
Front Immunol ; 12: 712678, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34413857

RESUMO

Mycobacterium tuberculosis (Mtb), the pathological agent that causes tuberculosis (TB) is the number one infectious killer worldwide with one fourth of the world's population currently infected. Data indicate that γ9δ2 T cells secrete Granzyme A (GzmA) in the extracellular space triggering the infected monocyte to inhibit growth of intracellular mycobacteria. Accordingly, deletion of GZMA from γ9δ2 T cells reverses their inhibitory capacity. Through mechanistic studies, GzmA's action was investigated in monocytes from human PBMCs. The use of recombinant human GzmA expressed in a mammalian system induced inhibition of intracellular mycobacteria to the same degree as previous human native protein findings. Our data indicate that: 1) GzmA is internalized within mycobacteria-infected cells, suggesting that GzmA uptake could prevent infection and 2) that the active site is not required to inhibit intracellular replication. Global proteomic analysis demonstrated that the ER stress response and ATP producing proteins were upregulated after GzmA treatment, and these proteins abundancies were confirmed by examining their expression in an independent set of patient samples. Our data suggest that immunotherapeutic host interventions of these pathways may contribute to better control of the current TB epidemic.


Assuntos
Trifosfato de Adenosina/biossíntese , Estresse do Retículo Endoplasmático/imunologia , Granzimas/fisiologia , Monócitos/microbiologia , Mycobacterium bovis/fisiologia , Subpopulações de Linfócitos T/imunologia , Western Blotting , Divisão Celular , Granzimas/biossíntese , Granzimas/genética , Granzimas/farmacologia , Células HEK293 , Humanos , Células T de Memória/imunologia , Células T de Memória/metabolismo , Proteoma , Receptores de Antígenos de Linfócitos T gama-delta/análise , Proteínas Recombinantes/farmacologia , Subpopulações de Linfócitos T/metabolismo , Eletroforese em Gel Diferencial Bidimensional
10.
J Biol Chem ; 297(2): 100890, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34197876

RESUMO

ß2-glycoprotein I (ß2GPI) is an abundant multidomain plasma protein that plays various roles in the clotting and complement cascades. It is also the main target of antiphospholipid antibodies (aPL) in the acquired coagulopathy known as antiphospholipid syndrome (APS). Previous studies have shown that ß2GPI adopts two interconvertible biochemical conformations, oxidized and reduced, depending on the integrity of the disulfide bonds. However, the precise contribution of the disulfide bonds to ß2GPI structure and function is unknown. Here, we substituted cysteine residues with serine to investigate how the disulfide bonds C32-C60 in domain I (DI) and C288-C326 in domain V (DV) regulate ß2GPI's structure and function. Results of our biophysical and biochemical studies support the hypothesis that the C32-C60 disulfide bond plays a structural role, whereas the disulfide bond C288-C326 is allosteric. We demonstrate that absence of the C288-C326 bond, unlike absence of the C32-C60 bond, diminishes membrane binding without affecting the thermodynamic stability and overall structure of the protein, which remains elongated in solution. We also document that, while absence of the C32-C60 bond directly impairs recognition of ß2GPI by pathogenic anti-DI antibodies, absence of the C288-C326 disulfide bond is sufficient to abolish complex formation in the presence of anionic phospholipids. We conclude that the disulfide bond C288-C326 operates as a molecular switch capable of regulating ß2GPI's physiological functions in a redox-dependent manner. We propose that in APS patients with anti-DI antibodies, selective rupture of the C288-C326 disulfide bond may be a valid strategy to lower the pathogenic potential of aPL.


Assuntos
Anticorpos Antifosfolipídeos/imunologia , Síndrome Antifosfolipídica/imunologia , Autoanticorpos/imunologia , Proteínas Recombinantes/metabolismo , beta 2-Glicoproteína I/metabolismo , Regulação Alostérica , Anticorpos Antifosfolipídeos/sangue , Síndrome Antifosfolipídica/patologia , Autoanticorpos/sangue , Linhagem Celular , Cristalografia por Raios X/métodos , Humanos , Oxirredução , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , beta 2-Glicoproteína I/química , beta 2-Glicoproteína I/imunologia , beta 2-Glicoproteína I/isolamento & purificação
11.
J Immunol ; 205(5): 1385-1392, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32759297

RESUMO

ß2-Glycoprotein I (ß2-GPI) is an abundant plasma glycoprotein with unknown physiological function and is currently recognized as the main target of antiphospholipid Abs responsible for complement activation and vascular thrombosis in patients with antiphospholipid syndrome (APS). In this study, we provide evidence that mannose-binding lectin (MBL) binds to ß2-GPI in Ca++ and a dose-dependent manner and that this interaction activates complement and promotes complement-dependent thrombin generation. Surprisingly, a significant binding was observed between MBL and isolated domains II and IV of ß2-GPI, whereas the carbohydrate chains, domain I and domain V, were not involved in the interaction, documenting a noncanonical binding mode between MBL and ß2-GPI. Importantly, this interaction may occur on endothelial cells because binding of MBL to ß2-GPI was detected on the surface of HUVECs, and colocalization of MBL with ß2-GPI was observed on the endothelium of a biopsy specimen of a femoral artery from an APS patient. Because ß2-GPI-mediated MBL-dependent thrombin generation was increased after priming the endothelium with TNF-α, our data suggests that this mechanism could play an important yet unrecognized role under physiological conditions and may be upregulated in pathological situations. Moreover, the complement activation and the procoagulant effects of the ß2-GPI/MBL complex may contribute to amplify similar activities of anti-ß2-GPI Abs in APS and possibly act independently of Abs, raising the issue of developing appropriate therapies to avoid recurrences and disability in patients at risk for these clinical conditions.


Assuntos
Ativação do Complemento/imunologia , Lectina de Ligação a Manose/metabolismo , Trombina/metabolismo , beta 2-Glicoproteína I/metabolismo , Síndrome Antifosfolipídica/imunologia , Síndrome Antifosfolipídica/metabolismo , Cálcio/metabolismo , Linhagem Celular , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Endotélio/imunologia , Endotélio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lectina de Ligação a Manose/imunologia , Ligação Proteica/imunologia , Trombina/imunologia , Trombose/imunologia , Trombose/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , beta 2-Glicoproteína I/imunologia
12.
Anal Biochem ; 559: 55-61, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30130491

RESUMO

Detection of specific antibodies has numerous research, therapeutic and diagnostic applications. Short peptide ligands that bind specifically to antibodies with continuous epitopes can be derived from epitope mapping experiments. Short peptide ligands (mimotopes) specific to antibodies with discontinuous epitopes can be identified by screening complex peptide libraries. In an effort to enhance practical utility of such peptide ligands, we describe here a simple approach to turn such target antibody-specific peptide ligands into specific ELISA detection reagents. We show that a simple addition of biotinylated peptide ligands to commonly available horseradish peroxidase (HRP)-labeled streptavidin (or HRP-anti-biotin antibody), or digoxigenin-labeled peptides to HRP-anti-digoxigenin antibody detection reagents transformed these generic detection reagents into sensitive target antibody-specific reagents. ELISA assays performed using these reagents exhibited excellent analytical properties indicating their practical utility for antibody detection. One generic detection reagent can be readily transformed into many different specific ELISA reagents by a simple mix and match design using an appropriate target-specific peptide ligand. Simplicity of preparation of these ELISA reagents for detecting antibodies should facilitate their practical applications.


Assuntos
Anticorpos/análise , Ensaio de Imunoadsorção Enzimática/métodos , Indicadores e Reagentes/química , Peptídeos/química , Biotinilação , Ligantes
13.
Sci Rep ; 7: 44596, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294177

RESUMO

In addition to its procoagulant and proinflammatory functions mediated by cleavage of fibrinogen and PAR1, the trypsin-like protease thrombin activates the anticoagulant protein C in a reaction that requires the cofactor thrombomodulin and the endothelial protein C receptor. Once in the circulation, activated protein C functions as an anticoagulant, anti-inflammatory and regenerative factor. Hence, availability of a protein C activator would afford a therapeutic for patients suffering from thrombotic disorders and a diagnostic tool for monitoring the level of protein C in plasma. Here, we present a fusion protein where thrombin and the EGF456 domain of thrombomodulin are connected through a peptide linker. The fusion protein recapitulates the functional and structural properties of the thrombin-thrombomodulin complex, prolongs the clotting time by generating pharmacological quantities of activated protein C and effectively diagnoses protein C deficiency in human plasma. Notably, these functions do not require exogenous thrombomodulin, unlike other anticoagulant thrombin derivatives engineered to date. These features make the fusion protein an innovative step toward the development of protein C activators of clinical and diagnostic relevance.


Assuntos
Deficiência de Proteína C/sangue , Proteína C/isolamento & purificação , Proteínas Recombinantes de Fusão/genética , Trombomodulina/química , Receptor de Proteína C Endotelial/química , Receptor de Proteína C Endotelial/genética , Humanos , Peptídeos/sangue , Peptídeos/química , Proteína C/química , Proteína C/genética , Deficiência de Proteína C/genética , Proteínas Recombinantes de Fusão/química , Trombomodulina/genética
14.
Protein Sci ; 19(5): 1065-78, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20440842

RESUMO

The antiphospholipid syndrome (APS) is a severe autoimmune disease associated with recurrent thrombosis and fetal loss and characterized by the presence of circulating autoantibodies (aAbs) mainly recognizing the N-terminal domain (DmI) of beta2-glycoprotein I (beta2GpI). To possibly block anti-beta2GpI Abs activity, we synthesized the entire DmI comprising residues 1-64 of beta2GpI by chemical methods. Oxidative disulfide renaturation of DmI was achieved in the presence of reduced and oxidized glutathione. The folded DmI (N-DmI) was purified by RP-HPLC, and its chemical identity and correct disulfide pairing (Cys4-Cys47 and Cys32-Cys60) were established by enzymatic peptide mass fingerprint analysis. The results of the conformational characterization, conducted by far- and near-UV CD and fluorescence spectroscopy, provided strong evidence for the native-like structure of DmI, which is also quite resistant to both Gdn-HCl and thermal denaturation. However, the thermodynamic stability of N-DmI at 37 degrees C was remarkably low, in agreement with the unfolding energetics of small proteins. Of note, aAbs failed to bind to plates coated with N-DmI in direct binding experiments. From ELISA competition experiments with plate-immobilized beta2GpI, a mean IC(50) value of 8.8 microM could be estimated for N-DmI, similar to that of the full-length protein, IC(50)(beta2GpI) = 6.4 microM, whereas the cysteine-reduced and carboxamidomethylated DmI, RC-DmI, failed to bind to anti-beta2GpI Abs. The versatility of chemical synthesis was also exploited to produce an N-terminally biotin-(PEG)(2)-derivative of N-DmI (Biotin-N-DmI) to be possibly used as a new tool in APS diagnosis. Strikingly, Biotin-N-DmI loaded onto a streptavidin-coated plate selectively recognized aAbs from APS patients.


Assuntos
Biotina/química , beta 2-Glicoproteína I/química , beta 2-Glicoproteína I/síntese química , Sequência de Aminoácidos , Síndrome Antifosfolipídica , Autoanticorpos/metabolismo , Ligação Competitiva , Biotina/metabolismo , Dicroísmo Circular , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Estabilidade Proteica , Estrutura Terciária de Proteína , Termodinâmica , beta 2-Glicoproteína I/sangue , beta 2-Glicoproteína I/isolamento & purificação , beta 2-Glicoproteína I/metabolismo
15.
Biochim Biophys Acta ; 1794(4): 602-14, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19167525

RESUMO

Protease Nexin-1, a 43-kDa glycoprotein, is a major physiological thrombin inhibitor involved in the modulation of nerve cell plasticity. Recombinant rat Protease Nexin-1 (rPN-1) was efficiently produced in Escherichia coli using a T7 RNA polymerase based expression system and purified by heparin-sepharose affinity chromatography yielding 3 mg of protein per liter of cell culture. The purity and chemical identity of rPN-1 were assessed by SDS-PAGE, Reverse Phase- High Performance Liquid Chromatography, mass spectrometry and two-dimensional-gel electrophoresis. Conformational analysis by circular dichroism and fluorescence spectroscopy revealed the presence of mixed alpha/beta secondary structure and the prevailing localization of Trp-residues in rather polar environments. Fluorescence titration of rPN-1 with heparin indicated that rPN-1 binds heparin with high affinity. Furthermore, the formation of a SDS-stable 1:1 thrombin-rPN-1 complex, monitored by SDS-PAGE, confirmed the native-like structure of rPN-1. Finally, the cellular effects of rPN-1, such as its ability to promote neurite outgrowth in neuroblastoma cells, were found to be very similar to those elicited by natural PN-1. Altogether, our results demonstrate that glycosylation does not alter neither structure nor function of PN-1 and that E. coli is a suitable expression system for obtaining milligram quantities of pure and fully active rPN-1 for structural and functional studies.


Assuntos
Escherichia coli/genética , Serpinas/química , Serpinas/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Células HeLa , Heparina/metabolismo , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Neuritos/ultraestrutura , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serpina E2 , Serpinas/genética , Trombina/metabolismo
16.
J Biol Chem ; 283(44): 30193-204, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18779330

RESUMO

The expression of the elongated fibrinogen gamma chain, termed gamma', derives from alternative splicing of mRNA and causes an insertion sequence of 20 amino acids. This insertion domain interacts with the anion-binding exosite (ABE)-II of thrombin. This study investigated whether and how gamma' chain binding to ABE-II affects thrombin interaction with its platelet receptors, i.e. glycoprotein Ibalpha (GpIbalpha), protease-activated receptor (PAR) 1, and PAR4. Both synthetic gamma' peptide and fibrinogen fragment D*, containing the elongated gamma' chain, inhibited thrombin-induced platelet aggregation up to 70%, with IC(50) values of 42+/-3.5 and 0.47+/-0.03 microm, respectively. Solid-phase binding and spectrofluorimetric assays showed that both fragment D* and the synthetic gamma' peptide specifically bind to thrombin ABE-II and competitively inhibit the thrombin binding to GpIbalpha with a mean K(i) approximately 0.5 and approximately 35 microm, respectively. Both these gamma' chain-containing ligands allosterically inhibited thrombin cleavage of a synthetic PAR1 peptide, of native PAR1 molecules on intact platelets, and of the synthetic chromogenic peptide D-Phe-pipecolyl-Arg-p-nitroanilide. PAR4 cleavage was unaffected. In summary, fibrinogen gamma' chain binds with high affinity to thrombin and inhibits with combined mechanisms the platelet response to thrombin. Thus, its variations in vivo may affect the hemostatic balance in arterial circulation.


Assuntos
Plaquetas/metabolismo , Fibrinogênio/química , Trombina/química , Sítios de Ligação , Ligação Competitiva , Humanos , Hidrólise , Cinética , Peptídeos/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptor PAR-1/metabolismo , Receptores de Trombina/química , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA