Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Arch Dis Child ; 109(8): 654-658, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38724065

RESUMO

BACKGROUND: Idiopathic intracranial hypertension (IIH) is a potentially disabling condition. There is a lack of evidence and national guidance on how to diagnose and treat paediatric IIH, leading to variation in clinical practice. We conducted a national Delphi consensus via the Children's Headache Network to propose a best-practice diagnostic and therapeutic pathway. METHODS: The Delphi process was selected as the most appropriate methodology for examining current opinion among experts in the UK. 104 questions were considered by 66 healthcare professionals, addressing important aspects of IIH care: assessment, diagnosis, treatment, follow-up and surveillance. General paediatricians, paediatric neurologists, ophthalmologists, opticians, neuroradiologists and neurosurgeons with a clinical interest or experience in IIH, were invited to take part. RESULTS: The Delphi process consisted of three rounds comprising 104 questions (round 1, 67; round 2, 24; round 3 (ophthalmological), 13) and was completed between March 2019 and August 2021. There were 54 and 65 responders in the first and second rounds, respectively. The Delphi was endorsed by the Royal College of Ophthalmologists, which engaged 59 ophthalmologists for round 3. CONCLUSIONS: This UK-based Delphi consensus process reached agreement for the management of paediatric IIH and has been endorsed by the Children's Headache Network and more broadly, the British Paediatric Neurology Association. It provides a basis for a pragmatic clinical approach. The recommendations will help to improve clinical care while minimising under and over diagnosis.


Assuntos
Consenso , Técnica Delphi , Pseudotumor Cerebral , Humanos , Criança , Pseudotumor Cerebral/diagnóstico , Pseudotumor Cerebral/terapia , Pseudotumor Cerebral/complicações , Adolescente , Reino Unido , Guias de Prática Clínica como Assunto
2.
Epilepsia ; 61(10): 2224-2233, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32875551

RESUMO

OBJECTIVE: To characterize a cohort of children with epilepsia partialis continua (EPC) and develop a diagnostic algorithm incorporating key differential diagnoses. METHODS: Children presenting with EPC to a tertiary pediatric neurology center between 2002 and 2019 were characterized. RESULTS: Fifty-four children fulfilled EPC criteria. Median age at onset was 7 years (range 0.6-15), with median follow-up of 4.3 years (range 0.2-16). The diagnosis was Rasmussen encephalitis (RE) in 30 of 54 (56%), a mitochondrial disorder in 12 of 54 (22.2%), and magnetic resonance imaging (MRI) lesion-positive focal epilepsy in 6 of 54 (11.1%). No diagnosis was made in 5 of 54 (9%). Children with mitochondrial disorders developed EPC earlier; each additional year at presentation reduced the odds of a mitochondrial diagnosis by 26% (P = .02). Preceding developmental concerns (odds ratio [OR] 22, P < .001), no seizures prior to EPC (OR 22, P < .001), bilateral slowing on electroencephalogram (EEG) (OR 26, P < .001), and increased cerebrospinal fluid (CSF) protein level (OR 16) predicted a mitochondrial disorder. Asymmetry or hemiatrophy was evident on MRI at presentation with EPC in 18 of 30 (60%) children with RE, and in the remainder at a median of 6 months (range 3-15) after EPC onset. The first diagnostic test is brain MRI. Hemiatrophy may permit a diagnosis of RE with unilateral clinical and EEG findings. For children in whom a diagnosis of RE cannot be made on first scan but the clinical and radiological presentation resembles RE, repeat imaging every 6 months is recommended to detect progressive unicortical hemiatrophy, and brain biopsy should be considered. Evidence of intrathecal inflammation (oligoclonal bands and raised neopterin) can be supportive. In children with bihemispheric EPC, rapid polymerase gamma testing is recommended and if negative, sequencing mtDNA and whole-exome sequencing on blood-derived DNA should be performed. SIGNIFICANCE: Children presenting with EPC due to a mitochondrial disorder show clinical features distinguishing them from RE and structural epilepsies. A diagnostic algorithm for children with EPC will allow targeted investigation and timely diagnosis.


Assuntos
Algoritmos , Encefalite/diagnóstico por imagem , Epilepsia Parcial Contínua/diagnóstico por imagem , Doenças Mitocondriais/diagnóstico por imagem , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Diagnóstico Diferencial , Eletroencefalografia/métodos , Encefalite/fisiopatologia , Epilepsia Parcial Contínua/fisiopatologia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética/métodos , Masculino , Doenças Mitocondriais/fisiopatologia
4.
Nat Genet ; 49(2): 223-237, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27992417

RESUMO

Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.


Assuntos
Distonia/genética , Histona-Lisina N-Metiltransferase/genética , Mutação/genética , Adolescente , Proteínas de Ligação a DNA/genética , Feminino , Histona Metiltransferases , Histonas/genética , Humanos , Lisina/genética , Masculino , Metilação , Proteínas Nucleares/genética
6.
Nat Genet ; 48(10): 1185-92, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27571260

RESUMO

Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.


Assuntos
Doenças de Pequenos Vasos Cerebrais/genética , Leucoencefalopatias/genética , Mutação , RNA Nucleolar Pequeno/genética , Adolescente , Adulto , Calcinose/genética , Calcinose/patologia , Linhagem Celular , Doenças de Pequenos Vasos Cerebrais/patologia , Criança , Pré-Escolar , Cromossomos Humanos Par 17 , Estudos de Coortes , Cistos/genética , Cistos/patologia , Exoma , Feminino , Ligação Genética , Genoma Humano , Humanos , Lactente , Leucoencefalopatias/patologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA , Adulto Jovem
7.
Brain ; 139(Pt 3): 765-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917586

RESUMO

Vici syndrome is a progressive neurodevelopmental multisystem disorder due to recessive mutations in the key autophagy gene EPG5. We report genetic, clinical, neuroradiological, and neuropathological features of 50 children from 30 families, as well as the neuronal phenotype of EPG5 knock-down in Drosophila melanogaster. We identified 39 different EPG5 mutations, most of them truncating and predicted to result in reduced EPG5 protein. Most mutations were private, but three recurrent mutations (p.Met2242Cysfs*5, p.Arg417*, and p.Gln336Arg) indicated possible founder effects. Presentation was mainly neonatal, with marked hypotonia and feeding difficulties. In addition to the five principal features (callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, and immune dysfunction), we identified three equally consistent features (profound developmental delay, progressive microcephaly, and failure to thrive). The manifestation of all eight of these features has a specificity of 97%, and a sensitivity of 89% for the presence of an EPG5 mutation and will allow informed decisions about genetic testing. Clinical progression was relentless and many children died in infancy. Survival analysis demonstrated a median survival time of 24 months (95% confidence interval 0-49 months), with only a 10th of patients surviving to 5 years of age. Survival outcomes were significantly better in patients with compound heterozygous mutations (P = 0.046), as well as in patients with the recurrent p.Gln336Arg mutation. Acquired microcephaly and regression of skills in long-term survivors suggests a neurodegenerative component superimposed on the principal neurodevelopmental defect. Two-thirds of patients had a severe seizure disorder, placing EPG5 within the rapidly expanding group of genes associated with early-onset epileptic encephalopathies. Consistent neuroradiological features comprised structural abnormalities, in particular callosal agenesis and pontine hypoplasia, delayed myelination and, less frequently, thalamic signal intensity changes evolving over time. Typical muscle biopsy features included fibre size variability, central/internal nuclei, abnormal glycogen storage, presence of autophagic vacuoles and secondary mitochondrial abnormalities. Nerve biopsy performed in one case revealed subtotal absence of myelinated axons. Post-mortem examinations in three patients confirmed neurodevelopmental and neurodegenerative features and multisystem involvement. Finally, downregulation of epg5 (CG14299) in Drosophila resulted in autophagic abnormalities and progressive neurodegeneration. We conclude that EPG5-related Vici syndrome defines a novel group of neurodevelopmental disorders that should be considered in patients with suggestive features in whom mitochondrial, glycogen, or lysosomal storage disorders have been excluded. Neurological progression over time indicates an intriguing link between neurodevelopment and neurodegeneration, also supported by neurodegenerative features in epg5-deficient Drosophila, and recent implication of other autophagy regulators in late-onset neurodegenerative disease.


Assuntos
Agenesia do Corpo Caloso/diagnóstico , Agenesia do Corpo Caloso/genética , Autofagia/genética , Catarata/diagnóstico , Catarata/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteínas/genética , Agenesia do Corpo Caloso/complicações , Animais , Proteínas Relacionadas à Autofagia , Catarata/complicações , Pré-Escolar , Estudos Transversais , Drosophila melanogaster , Feminino , Hipocampo/patologia , Humanos , Proteínas de Membrana Lisossomal , Masculino , Mutação/genética , Transtornos do Neurodesenvolvimento/complicações , Estudos Retrospectivos , Proteínas de Transporte Vesicular
8.
Neuropediatrics ; 45(3): 175-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24407470

RESUMO

OBJECTIVE: With the identification of mutations in the conserved telomere maintenance component 1 (CTC1) gene as the cause of Coats plus (CP) disease, it has become evident that leukoencephalopathy with calcifications and cysts (LCC) is a distinct genetic entity. PATIENTS AND METHODS: A total of 15 patients with LCC were identified from our database of patients with intracranial calcification. The clinical and radiological features are described. RESULTS: The median age (range) at presentation was 10 months (range, 2 days-54 years). Of the 15 patients, 9 presented with epileptic seizures, 5 with motor abnormalities, and 1 with developmental delay. Motor abnormalities developed in 14 patients and cognitive problems in 13 patients. Dense calcification occurred in the basal ganglia, thalami, dentate nucleus, brain stem, deep gyri, deep white matter, and in a pericystic distribution. Diffuse leukoencephalopathy was present in all patients, and it was usually symmetrical involving periventricular, deep, and sometimes subcortical, regions. Cysts developed in the basal ganglia, thalamus, deep white matter, cerebellum, or brain stem. In unaffected areas, normal myelination was present. No patient demonstrated cerebral atrophy. CONCLUSION: LCC shares the neuroradiological features of CP. However, LCC is a purely neurological disorder distinguished genetically by the absence of mutations in CTC1. The molecular cause(s) of LCC has (have) not yet been determined.


Assuntos
Encefalopatias/diagnóstico , Calcinose/diagnóstico , Cistos/diagnóstico , Leucoencefalopatias/diagnóstico , Doenças do Sistema Nervoso/diagnóstico , Adolescente , Adulto , Encefalopatias/complicações , Calcinose/complicações , Criança , Pré-Escolar , Cistos/complicações , Humanos , Lactente , Recém-Nascido , Leucoencefalopatias/complicações , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Tomógrafos Computadorizados , Adulto Jovem
9.
Brain ; 136(Pt 2): 536-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23361065

RESUMO

Polymicrogyria and lissencephaly are causally heterogeneous disorders of cortical brain development, with distinct neuropathological and neuroimaging patterns. They can be associated with additional structural cerebral anomalies, and recurrent phenotypic patterns have led to identification of recognizable syndromes. The lissencephalies are usually single-gene disorders affecting neuronal migration during cerebral cortical development. Polymicrogyria has been associated with genetic and environmental causes and is considered a malformation secondary to abnormal post-migrational development. However, the aetiology in many individuals with these cortical malformations is still unknown. During the past few years, mutations in a number of neuron-specific α- and ß-tubulin genes have been identified in both lissencephaly and polymicrogyria, usually associated with additional cerebral anomalies including callosal hypoplasia or agenesis, abnormal basal ganglia and cerebellar hypoplasia. The tubulin proteins form heterodimers that incorporate into microtubules, cytoskeletal structures essential for cell motility and function. In this study, we sequenced the TUBB2B and TUBA1A coding regions in 47 patients with a diagnosis of polymicrogyria and five with an atypical lissencephaly on neuroimaging. We identified four ß-tubulin and two α-tubulin mutations in patients with a spectrum of cortical and extra-cortical anomalies. Dysmorphic basal ganglia with an abnormal internal capsule were the most consistent feature. One of the patients with a TUBB2B mutation had a lissencephalic phenotype, similar to that previously associated with a TUBA1A mutation. The remainder had a polymicrogyria-like cortical dysplasia, but the grey matter malformation was not typical of that seen in 'classical' polymicrogyria. We propose that the cortical malformations associated with these genes represent a recognizable tubulinopathy-associated spectrum that ranges from lissencephalic to polymicrogyric cortical dysplasias, suggesting shared pathogenic mechanisms in terms of microtubular function and interaction with microtubule-associated proteins.


Assuntos
Homologia de Genes/genética , Lisencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Tubulina (Proteína)/genética , Adulto , Sequência de Aminoácidos , Córtex Cerebral/anormalidades , Córtex Cerebral/patologia , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Lisencefalia/diagnóstico , Masculino , Malformações do Desenvolvimento Cortical/diagnóstico , Dados de Sequência Molecular , Tubulina (Proteína)/química
10.
Nat Genet ; 44(11): 1243-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001123

RESUMO

Adenosine deaminases acting on RNA (ADARs) catalyze the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) and thereby potentially alter the information content and structure of cellular RNAs. Notably, although the overwhelming majority of such editing events occur in transcripts derived from Alu repeat elements, the biological function of non-coding RNA editing remains uncertain. Here, we show that mutations in ADAR1 (also known as ADAR) cause the autoimmune disorder Aicardi-Goutières syndrome (AGS). As in Adar1-null mice, the human disease state is associated with upregulation of interferon-stimulated genes, indicating a possible role for ADAR1 as a suppressor of type I interferon signaling. Considering recent insights derived from the study of other AGS-related proteins, we speculate that ADAR1 may limit the cytoplasmic accumulation of the dsRNA generated from genomic repetitive elements.


Assuntos
Adenosina Desaminase/genética , Doenças Autoimunes do Sistema Nervoso/genética , Interferon Tipo I , Malformações do Sistema Nervoso/genética , RNA de Cadeia Dupla/metabolismo , Elementos Alu/genética , Animais , Exoma , Expressão Gênica , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Mutação , Conformação Proteica , RNA de Cadeia Dupla/genética , Proteínas de Ligação a RNA , Análise de Sequência de DNA , Transdução de Sinais , Relação Estrutura-Atividade
11.
Pediatr Neurol ; 45(4): 246-52, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21907887

RESUMO

Molybdenum cofactor deficiency predominantly affects the central nervous system. There are limited data on long-term outcome or brain magnetic resonance imaging (MRI) features. We examined the clinical, brain MRI, biochemical, genetic, and electroencephalographic features and outcome in 8 children with a diagnosis of molybdenum cofactor deficiency observed in our institution over 10 years. Two modes of presentation were identified: early (classical) onset with predominantly epileptic encephalopathy in 6 neonates, and late (atypical) with global developmental impairment in 2 children. Children in both groups had varying degrees of motor, language, and visual impairment. There were no deaths. Brain MRI demonstrated cerebral infarction in all but one child in the atypical group. Distinctive features were best observed on early brain MRI: acute symmetrical involvement of the globus pallidi and subthalamic regions coexisting with older cerebral hemisphere infarction, chronic lesions suggestive of a prenatal insult, pontocerebellar hypoplasia with retrocerebellar cyst, and presence of a distinctive band at the cortical/subcortical white matter. Sequential imaging revealed progressive pontine atrophy and enlargement of retrocerebellar cyst. The brain MRI of one child with atypical presentation (verbal dyspraxia, lens dislocation) showed symmetrical cerebellar deep nuclei signal abnormality without cerebral infarction. Imaging pattern on early brain MRI (<1 week) may prompt the diagnosis, potentially allowing early treatment and disease modifications.


Assuntos
Encéfalo/patologia , Erros Inatos do Metabolismo dos Metais/patologia , Fibras Nervosas Mielinizadas/patologia , Atrofia/patologia , Criança , Pré-Escolar , Progressão da Doença , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Molibdoferredoxina , Neuroimagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA