Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 21(3): 337-347, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30476237

RESUMO

BACKGROUND: Although considerable progress has been made in understanding molecular alterations driving gliomagenesis, the diverse metabolic programs contributing to the aggressive phenotype of glioblastoma remain unclear. The aim of this study was to define and provide molecular context to metabolic reprogramming driving gliomagenesis. METHODS: Integrative cross-platform analyses coupling global metabolomic profiling with genomics in patient-derived glioma (low-grade astrocytoma [LGA; n = 28] and glioblastoma [n = 80]) were performed. Identified programs were then metabolomically, genomically, and functionally evaluated in preclinical models. RESULTS: Clear metabolic programs were identified differentiating LGA from glioblastoma, with aberrant lipid, peptide, and amino acid metabolism representing dominant metabolic nodes associated with malignant transformation. Although the metabolomic profiles of glioblastoma and LGA appeared mutually exclusive, considerable metabolic heterogeneity was observed in glioblastoma. Surprisingly, integrative analyses demonstrated that O6-methylguanine-DNA methyltransferase methylation and isocitrate dehydrogenase mutation status were equally distributed among glioblastoma metabolic profiles. Transcriptional subtypes, on the other hand, tightly clustered by their metabolomic signature, with proneural and mesenchymal tumor profiles being mutually exclusive. Integrating these metabolic phenotypes with gene expression analyses uncovered tightly orchestrated and highly redundant transcriptional programs designed to support the observed metabolic programs by actively importing these biochemical substrates from the microenvironment, contributing to a state of enhanced metabolic heterotrophy. These findings were metabolomically, genomically, and functionally recapitulated in preclinical models. CONCLUSION: Despite disparate molecular pathways driving the progression of glioblastoma, metabolic programs designed to maintain its aggressive phenotype remain conserved. This contributes to a state of enhanced metabolic heterotrophy supporting survival in diverse microenvironments implicit in this malignancy.


Assuntos
Aminoácidos/metabolismo , Astrocitoma/metabolismo , Neoplasias Encefálicas/metabolismo , Carcinogênese , Glioblastoma/metabolismo , Metabolismo dos Lipídeos , Metabolômica , Astrocitoma/genética , Astrocitoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Reprogramação Celular , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Perfilação da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Isocitrato Desidrogenase/genética , Mutação , Gradação de Tumores , Peptídeos/metabolismo , Proteínas Supressoras de Tumor/genética
2.
Mol Cancer Ther ; 10(12): 2405-14, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21992793

RESUMO

The purpose of this study was to determine the capacity of MK-1775, a potent Wee-1 inhibitor, to abrogate the radiation-induced G(2) checkpoint arrest and modulate radiosensitivity in glioblastoma cell models and normal human astrocytes. The radiation-induced checkpoint response of established glioblastoma cell lines, glioblastoma neural stem (GNS) cells, and astrocytes were determined in vitro by flow cytometry and in vivo by mitosis-specific staining using immunohistochemistry. Mechanisms underlying MK-1775 radiosensitization were determined by mitotic catastrophe and γH2AX expression. Radiosensitivity was determined in vitro by the clonogenic assay and in vivo by tumor growth delay. MK-1775 abrogated the radiation-induced G(2) checkpoint and enhanced radiosensitivity in established glioblastoma cell lines in vitro and in vivo, without modulating radiation response in normal human astrocytes. MK-1775 appeared to attenuate the early-phase of the G(2) checkpoint arrest in GNS cell lines, although the arrest was not sustained and did not lead to increased radiosensitivity. These results show that MK-1775 can selectively enhance radiosensitivity in established glioblastoma cell lines. Further work is required to determine the role Wee-1 plays in checkpoint activation of GNS cells.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos da radiação , Glioblastoma/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Proteínas Nucleares/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacocinética , Pirazóis/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirimidinonas , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA